|
|
|
@ -1,49 +1,50 @@
|
|
|
|
|
package com.yuxue.test;
|
|
|
|
|
package com.yuxue.train;
|
|
|
|
|
|
|
|
|
|
import static org.bytedeco.javacpp.opencv_core.CV_32F;
|
|
|
|
|
import static org.bytedeco.javacpp.opencv_core.CV_32FC1;
|
|
|
|
|
import static org.bytedeco.javacpp.opencv_core.CV_32SC1;
|
|
|
|
|
import static org.bytedeco.javacpp.opencv_core.getTickCount;
|
|
|
|
|
import static org.bytedeco.javacpp.opencv_imgproc.resize;
|
|
|
|
|
import static org.bytedeco.javacpp.opencv_ml.ROW_SAMPLE;
|
|
|
|
|
|
|
|
|
|
import java.util.Vector;
|
|
|
|
|
|
|
|
|
|
import org.bytedeco.javacpp.opencv_core.CvMemStorage;
|
|
|
|
|
import org.bytedeco.javacpp.opencv_core.FileStorage;
|
|
|
|
|
import org.bytedeco.javacpp.opencv_core.Mat;
|
|
|
|
|
import org.bytedeco.javacpp.opencv_core.Scalar;
|
|
|
|
|
import org.bytedeco.javacpp.opencv_core.Size;
|
|
|
|
|
import org.bytedeco.javacpp.opencv_core.TermCriteria;
|
|
|
|
|
import org.bytedeco.javacpp.opencv_imgcodecs;
|
|
|
|
|
import org.bytedeco.javacpp.opencv_ml.ANN_MLP;
|
|
|
|
|
import org.bytedeco.javacpp.opencv_ml.TrainData;
|
|
|
|
|
|
|
|
|
|
import com.yuxue.easypr.core.CoreFunc;
|
|
|
|
|
import com.yuxue.enumtype.Direction;
|
|
|
|
|
import com.yuxue.util.Convert;
|
|
|
|
|
import com.yuxue.util.FileUtil;
|
|
|
|
|
|
|
|
|
|
import ch.qos.logback.classic.pattern.Util;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
/**
|
|
|
|
|
*
|
|
|
|
|
* @author yuxue
|
|
|
|
|
* @date 2020-05-14 22:16
|
|
|
|
|
*/
|
|
|
|
|
public class ANNTrain {
|
|
|
|
|
|
|
|
|
|
/*private ANN_MLP ann=ANN_MLP.create();
|
|
|
|
|
|
|
|
|
|
private ANN_MLP ann = ANN_MLP.create();
|
|
|
|
|
|
|
|
|
|
// 中国车牌
|
|
|
|
|
private final char strCharacters[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E',
|
|
|
|
|
'F', 'G', 'H', 没有I
|
|
|
|
|
'J', 'K', 'L', 'M', 'N', 没有O 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' };
|
|
|
|
|
private final int numCharacter = 34; 没有I和0,10个数字与24个英文字符之和
|
|
|
|
|
private final char strCharacters[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', /* 没有I */
|
|
|
|
|
'J', 'K', 'L', 'M', 'N', /* 没有O */'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' };
|
|
|
|
|
private final int numCharacter = 34; /* 没有I和0,10个数字与24个英文字符之和 */
|
|
|
|
|
|
|
|
|
|
// 以下都是我训练时用到的中文字符数据,并不全面,有些省份没有训练数据所以没有字符
|
|
|
|
|
// 有些后面加数字2的表示在训练时常看到字符的一种变形,也作为训练数据存储
|
|
|
|
|
private final String strChinese[] = { "zh_cuan" 川 , "zh_e" 鄂 , "zh_gan" 赣 , "zh_hei" 黑 ,
|
|
|
|
|
"zh_hu" 沪 , "zh_ji" 冀 , "zh_jl" 吉 , "zh_jin" 津 , "zh_jing" 京 , "zh_shan" 陕 ,
|
|
|
|
|
"zh_liao" 辽 , "zh_lu" 鲁 , "zh_min" 闽 , "zh_ning" 宁 , "zh_su" 苏 , "zh_sx" 晋 ,
|
|
|
|
|
"zh_wan" 皖 , "zh_yu" 豫 , "zh_yue" 粤 , "zh_zhe" 浙 };
|
|
|
|
|
private final String strChinese[] = { "zh_cuan" /* 川 */, "zh_e" /* 鄂 */, "zh_gan" /* 赣 */, "zh_hei" /* 黑 */, "zh_hu" /* 沪 */, "zh_ji" /* 冀 */, "zh_jl" /* 吉 */, "zh_jin" /* 津 */, "zh_jing" /* 京 */,
|
|
|
|
|
"zh_shan" /* 陕 */, "zh_liao" /* 辽 */, "zh_lu" /* 鲁 */, "zh_min" /* 闽 */, "zh_ning" /* 宁 */, "zh_su" /* 苏 */, "zh_sx" /* 晋 */, "zh_wan" /* 皖 */, "zh_yu" /* 豫 */, "zh_yue" /* 粤 */,
|
|
|
|
|
"zh_zhe" /* 浙 */ };
|
|
|
|
|
|
|
|
|
|
private final int numAll = 54; 34+20=54
|
|
|
|
|
private final int numAll = 54; /* 34+20=54 */
|
|
|
|
|
|
|
|
|
|
public Mat features(Mat in, int sizeData) {
|
|
|
|
|
// Histogram features
|
|
|
|
@ -72,23 +73,27 @@ public class ANNTrain {
|
|
|
|
|
out.ptr(j).put(Convert.getBytes(val));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// if(DEBUG)
|
|
|
|
|
// cout << out << "\n===========================================\n";
|
|
|
|
|
return out;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public void annTrain(Mat TrainData, Mat classes, int nNeruns) {
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*
|
|
|
|
|
* @param TrainData 训练样本数据
|
|
|
|
|
* @param classes 数据对应的标签
|
|
|
|
|
* @param nNeruns
|
|
|
|
|
*/
|
|
|
|
|
public void annTrain(Mat trainingData, Mat classes, int nNeruns) {
|
|
|
|
|
ann.clear();
|
|
|
|
|
Mat layers = new Mat(1, 3, CV_32SC1);
|
|
|
|
|
layers.ptr(0).put(Convert.getBytes(TrainData.cols()));
|
|
|
|
|
layers.ptr(0).put(Convert.getBytes(trainingData.cols()));
|
|
|
|
|
layers.ptr(1).put(Convert.getBytes(nNeruns));
|
|
|
|
|
layers.ptr(2).put(Convert.getBytes(numAll));
|
|
|
|
|
ann.create(layers, ANN_MLP.SIGMOID_SYM, 1, 1);
|
|
|
|
|
|
|
|
|
|
// Prepare trainClases
|
|
|
|
|
// Create a mat with n trained data by m classes
|
|
|
|
|
Mat trainClasses = new Mat();
|
|
|
|
|
trainClasses.create(TrainData.rows(), numAll, CV_32FC1);
|
|
|
|
|
trainClasses.create(trainingData.rows(), numAll, CV_32FC1);
|
|
|
|
|
for (int i = 0; i < trainClasses.rows(); i++) {
|
|
|
|
|
for (int k = 0; k < trainClasses.cols(); k++) {
|
|
|
|
|
// If class of data i is same than a k class
|
|
|
|
@ -98,12 +103,29 @@ public class ANNTrain {
|
|
|
|
|
trainClasses.ptr(i, k).put(Convert.getBytes(0f));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
Mat weights = new Mat(1, TrainData.rows(), CV_32FC1, Scalar.all(1));
|
|
|
|
|
Mat weights = new Mat(1, trainingData.rows(), CV_32FC1, Scalar.all(1));
|
|
|
|
|
// Learn classifier
|
|
|
|
|
ann.train(TrainData, trainClasses, weights);
|
|
|
|
|
|
|
|
|
|
TrainData train_data = TrainData.create(trainingData, ROW_SAMPLE, trainClasses);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
ann_->setTrainMethod(cv::ml::ANN_MLP::TrainingMethods::BACKPROP);
|
|
|
|
|
ann_->setTermCriteria(cvTermCriteria(CV_TERMCRIT_ITER, 30000, 0.0001));
|
|
|
|
|
ann_->setBackpropWeightScale(0.1);
|
|
|
|
|
ann_->setBackpropMomentumScale(0.1);*/
|
|
|
|
|
|
|
|
|
|
ann.setLayerSizes(layers);
|
|
|
|
|
ann.setActivationFunction(ANN_MLP.SIGMOID_SYM, 1, 1);
|
|
|
|
|
ann.setTrainMethod(ANN_MLP.BACKPROP);
|
|
|
|
|
TermCriteria criteria = new TermCriteria(TermCriteria.MAX_ITER, 30000, 0.0001);
|
|
|
|
|
ann.setTermCriteria(criteria);
|
|
|
|
|
ann.setBackpropWeightScale(0.1);
|
|
|
|
|
ann.setBackpropMomentumScale(0.1);
|
|
|
|
|
ann.train(train_data);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public int saveTrainData() {
|
|
|
|
|
|
|
|
|
|
System.out.println("Begin saveTrainData");
|
|
|
|
|
Mat classes = new Mat();
|
|
|
|
|
Mat trainingDataf5 = new Mat();
|
|
|
|
@ -122,8 +144,8 @@ public class ANNTrain {
|
|
|
|
|
|
|
|
|
|
int size = (int) files.size();
|
|
|
|
|
for (int j = 0; j < size; j++) {
|
|
|
|
|
System.out.println(files.get(j));
|
|
|
|
|
Mat img = imread(files.get(j), 0);
|
|
|
|
|
// System.out.println(files.get(j));
|
|
|
|
|
Mat img = opencv_imgcodecs.imread(files.get(j), 0);
|
|
|
|
|
Mat f5 = features(img, 5);
|
|
|
|
|
Mat f10 = features(img, 10);
|
|
|
|
|
Mat f15 = features(img, 15);
|
|
|
|
@ -143,12 +165,12 @@ public class ANNTrain {
|
|
|
|
|
System.out.println("Character: " + strChinese[i]);
|
|
|
|
|
String str = path + '/' + strChinese[i];
|
|
|
|
|
Vector<String> files = new Vector<String>();
|
|
|
|
|
Util.getFiles(str, files);
|
|
|
|
|
FileUtil.getFiles(str, files);
|
|
|
|
|
|
|
|
|
|
int size = (int) files.size();
|
|
|
|
|
for (int j = 0; j < size; j++) {
|
|
|
|
|
System.out.println(files.get(j));
|
|
|
|
|
Mat img = imread(files.get(j), 0);
|
|
|
|
|
// System.out.println(files.get(j));
|
|
|
|
|
Mat img = opencv_imgcodecs.imread(files.get(j), 0);
|
|
|
|
|
Mat f5 = features(img, 5);
|
|
|
|
|
Mat f10 = features(img, 10);
|
|
|
|
|
Mat f15 = features(img, 15);
|
|
|
|
@ -172,11 +194,11 @@ public class ANNTrain {
|
|
|
|
|
new Mat(labels).copyTo(classes);
|
|
|
|
|
|
|
|
|
|
FileStorage fs = new FileStorage("res/train/ann_data.xml", FileStorage.WRITE);
|
|
|
|
|
fs.writeObj("TrainingDataF5", trainingDataf5.data());
|
|
|
|
|
fs.writeObj("TrainingDataF10", trainingDataf10.data());
|
|
|
|
|
fs.writeObj("TrainingDataF15", trainingDataf15.data());
|
|
|
|
|
fs.writeObj("TrainingDataF20", trainingDataf20.data());
|
|
|
|
|
fs.writeObj("classes", classes.data());
|
|
|
|
|
fs.write("TrainingDataF5", trainingDataf5);
|
|
|
|
|
fs.write("TrainingDataF10", trainingDataf10);
|
|
|
|
|
fs.write("TrainingDataF15", trainingDataf15);
|
|
|
|
|
fs.write("TrainingDataF20", trainingDataf20);
|
|
|
|
|
fs.write("classes", classes);
|
|
|
|
|
fs.release();
|
|
|
|
|
|
|
|
|
|
System.out.println("End saveTrainData");
|
|
|
|
@ -184,32 +206,21 @@ public class ANNTrain {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public void saveModel(int _predictsize, int _neurons) {
|
|
|
|
|
|
|
|
|
|
// 样本文件数据已经保存到xml
|
|
|
|
|
FileStorage fs = new FileStorage("res/train/ann_data.xml", FileStorage.READ);
|
|
|
|
|
String training = "TrainingDataF" + _predictsize;
|
|
|
|
|
Mat TrainingData = new Mat(fs.get(training).readObj());
|
|
|
|
|
Mat TrainingData = new Mat(fs.get(training));
|
|
|
|
|
Mat Classes = new Mat(fs.get("classes"));
|
|
|
|
|
|
|
|
|
|
// train the Ann
|
|
|
|
|
System.out.println("Begin to saveModelChar predictSize:" + Integer.valueOf(_predictsize).toString());
|
|
|
|
|
System.out.println(" neurons:" + Integer.valueOf(_neurons).toString());
|
|
|
|
|
|
|
|
|
|
long start = getTickCount();
|
|
|
|
|
annTrain(TrainingData, Classes, _neurons);
|
|
|
|
|
long end = getTickCount();
|
|
|
|
|
System.out.println("GetTickCount:" + Long.valueOf((end - start) / 1000).toString());
|
|
|
|
|
|
|
|
|
|
System.out.println("End the saveModelChar");
|
|
|
|
|
|
|
|
|
|
System.out.println("完成耗时: " + Long.valueOf((end - start) / 1000).toString());
|
|
|
|
|
|
|
|
|
|
String model_name = "res/train/ann.xml";
|
|
|
|
|
|
|
|
|
|
// if(1)
|
|
|
|
|
// {
|
|
|
|
|
// String str =
|
|
|
|
|
// String.format("ann_prd:%d\tneu:%d",_predictsize,_neurons);
|
|
|
|
|
// model_name = str;
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
CvFileStorage fsto = CvFileStorage.open(model_name, CvMemStorage.create(), CV_STORAGE_WRITE);
|
|
|
|
|
|
|
|
|
|
FileStorage fsto = new FileStorage(model_name, FileStorage.WRITE);
|
|
|
|
|
ann.write(fsto, "ann");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -219,15 +230,13 @@ public class ANNTrain {
|
|
|
|
|
saveTrainData();
|
|
|
|
|
|
|
|
|
|
// 可根据需要训练不同的predictSize或者neurons的ANN模型
|
|
|
|
|
// for (int i = 2; i <= 2; i ++)
|
|
|
|
|
// {
|
|
|
|
|
// int size = i * 5;
|
|
|
|
|
// for (int j = 5; j <= 10; j++)
|
|
|
|
|
// {
|
|
|
|
|
// int neurons = j * 10;
|
|
|
|
|
// saveModel(size, neurons);
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
/*for (int i = 2; i <= 2; i++) {
|
|
|
|
|
int size = i * 5;
|
|
|
|
|
for (int j = 5; j <= 10; j++) {
|
|
|
|
|
int neurons = j * 10;
|
|
|
|
|
saveModel(size, neurons);
|
|
|
|
|
}
|
|
|
|
|
}*/
|
|
|
|
|
|
|
|
|
|
// 这里演示只训练model文件夹下的ann.xml,此模型是一个predictSize=10,neurons=40的ANN模型。
|
|
|
|
|
// 根据机器的不同,训练时间不一样,但一般需要10分钟左右,所以慢慢等一会吧。
|
|
|
|
@ -235,5 +244,5 @@ public class ANNTrain {
|
|
|
|
|
|
|
|
|
|
System.out.println("To be end.");
|
|
|
|
|
return 0;
|
|
|
|
|
}*/
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|