package com.yuxue.easypr.core;
import org.bytedeco.javacpp.BytePointer;
import org.bytedeco.javacpp.opencv_core;
import org.bytedeco.javacpp.opencv_core.Mat;
import org.bytedeco.javacpp.opencv_core.MatVector;
import org.bytedeco.javacpp.opencv_core.Size;
import org.bytedeco.javacpp.opencv_highgui;
import org.bytedeco.javacpp.opencv_imgproc;
import org.bytedeco.javacpp.indexer.FloatIndexer;
import com.yuxue.enumtype.Direction;
import com.yuxue.enumtype.PlateColor;
/**
*
* @author yuxue
* @date 2020-05-16 21:09
*/
public class CoreFunc {
/**
* 根据一幅图像与颜色模板获取对应的二值图
*
* @param src
* 输入RGB图像
* @param r
* 颜色模板(蓝色、黄色)
* @param adaptive_minsv
* S和V的最小值由adaptive_minsv这个bool值判断
*
* - 如果为true,则最小值取决于H值,按比例衰减
*
- 如果为false,则不再自适应,使用固定的最小值minabs_sv
*
* @return 输出灰度图(只有0和255两个值,255代表匹配,0代表不匹配)
*/
public static Mat colorMatch(final Mat src, final PlateColor r, final boolean adaptive_minsv) {
final float max_sv = 255;
final float minref_sv = 64;
final float minabs_sv = 95;
// 转到HSV空间进行处理,颜色搜索主要使用的是H分量进行蓝色与黄色的匹配工作
Mat src_hsv = new Mat();
opencv_imgproc.cvtColor(src, src_hsv, opencv_imgproc.CV_BGR2HSV);
MatVector hsvSplit = new MatVector();
opencv_core.split(src_hsv, hsvSplit);
opencv_imgproc.equalizeHist(hsvSplit.get(2), hsvSplit.get(2));
opencv_core.merge(hsvSplit, src_hsv);
// 匹配模板基色,切换以查找想要的基色
int min_h = r.minH;
int max_h = r.maxH;
float diff_h = (float) ((max_h - min_h) / 2);
int avg_h = (int) (min_h + diff_h);
int channels = src_hsv.channels();
int nRows = src_hsv.rows();
// 图像数据列需要考虑通道数的影响;
int nCols = src_hsv.cols() * channels;
// 连续存储的数据,按一行处理
if (src_hsv.isContinuous()) {
nCols *= nRows;
nRows = 1;
}
for (int i = 0; i < nRows; ++i) {
BytePointer p = src_hsv.ptr(i);
for (int j = 0; j < nCols; j += 3) {
int H = p.get(j) & 0xFF;
int S = p.get(j + 1) & 0xFF;
int V = p.get(j + 2) & 0xFF;
boolean colorMatched = false;
if (H > min_h && H < max_h) {
int Hdiff = 0;
if (H > avg_h)
Hdiff = H - avg_h;
else
Hdiff = avg_h - H;
float Hdiff_p = Hdiff / diff_h;
float min_sv = 0;
if (true == adaptive_minsv)
min_sv = minref_sv - minref_sv / 2 * (1 - Hdiff_p);
else
min_sv = minabs_sv;
if ((S > min_sv && S <= max_sv) && (V > min_sv && V <= max_sv))
colorMatched = true;
}
if (colorMatched == true) {
p.put(j, (byte) 0);
p.put(j + 1, (byte) 0);
p.put(j + 2, (byte) 255);
} else {
p.put(j, (byte) 0);
p.put(j + 1, (byte) 0);
p.put(j + 2, (byte) 0);
}
}
}
// 获取颜色匹配后的二值灰度图
MatVector hsvSplit_done = new MatVector();
opencv_core.split(src_hsv, hsvSplit_done);
Mat src_grey = hsvSplit_done.get(2);
return src_grey;
}
/**
* 判断一个车牌的颜色
*
* @param src
* 车牌mat
* @param r
* 颜色模板
* @param adaptive_minsv
* S和V的最小值由adaptive_minsv这个bool值判断
*
* - 如果为true,则最小值取决于H值,按比例衰减
*
- 如果为false,则不再自适应,使用固定的最小值minabs_sv
*
* @return
*/
public static boolean plateColorJudge(final Mat src, final PlateColor color, final boolean adaptive_minsv) {
// 判断阈值
final float thresh = 0.49f;
Mat gray = colorMatch(src, color, adaptive_minsv);
float percent = (float) opencv_core.countNonZero(gray) / (gray.rows() * gray.cols());
return (percent > thresh) ? true : false;
}
/**
* getPlateType 判断车牌的类型
*
* @param src
* @param adaptive_minsv
* S和V的最小值由adaptive_minsv这个bool值判断
*
* - 如果为true,则最小值取决于H值,按比例衰减
*
- 如果为false,则不再自适应,使用固定的最小值minabs_sv
*
* @return
*/
public static PlateColor getPlateType(final Mat src, final boolean adaptive_minsv) {
if (plateColorJudge(src, PlateColor.BLUE, adaptive_minsv) == true) {
return PlateColor.BLUE;
} else if (plateColorJudge(src, PlateColor.YELLOW, adaptive_minsv) == true) {
return PlateColor.YELLOW;
} else if (plateColorJudge(src, PlateColor.GREEN, adaptive_minsv) == true) {
return PlateColor.GREEN;
} else {
return PlateColor.UNKNOWN;
}
}
/**
* 获取垂直或水平方向直方图
*
* @param img
* @param direction
* @return
*/
public static float[] projectedHistogram(final Mat img, Direction direction) {
int sz = 0;
switch (direction) {
case HORIZONTAL:
sz = img.rows();
break;
case VERTICAL:
sz = img.cols();
break;
default:
break;
}
// 统计这一行或一列中,非零元素的个数,并保存到nonZeroMat中
float[] nonZeroMat = new float[sz];
opencv_core.extractChannel(img, img, 0);
for (int j = 0; j < sz; j++) {
Mat data = (direction == Direction.HORIZONTAL) ? img.row(j) : img.col(j);
int count = opencv_core.countNonZero(data);
nonZeroMat[j] = count;
}
// Normalize histogram
float max = 0;
for (int j = 0; j < nonZeroMat.length; ++j) {
max = Math.max(max, nonZeroMat[j]);
}
if (max > 0) {
for (int j = 0; j < nonZeroMat.length; ++j) {
nonZeroMat[j] /= max;
}
}
return nonZeroMat;
}
/**
* Assign values to feature
*
* 样本特征为水平、垂直直方图和低分辨率图像所组成的矢量
*
* @param in
* @param sizeData
* 低分辨率图像size = sizeData*sizeData, 可以为0
* @return
*/
public static Mat features(final Mat in, final int sizeData) {
float[] vhist = projectedHistogram(in, Direction.VERTICAL);
float[] hhist = projectedHistogram(in, Direction.HORIZONTAL);
Mat lowData = new Mat();
if (sizeData > 0) {
// resize.cpp:3784: error: (-215:Assertion failed) !ssize.empty() in function 'cv::resize'
opencv_imgproc.resize(in, lowData, new Size(sizeData, sizeData));
}
int numCols = vhist.length + hhist.length + lowData.cols() * lowData.rows();
Mat out = Mat.zeros(1, numCols, opencv_core.CV_32F).asMat();
FloatIndexer idx = out.createIndexer();
int j = 0;
for (int i = 0; i < vhist.length; ++i, ++j) {
idx.put(0, j, vhist[i]);
}
for (int i = 0; i < hhist.length; ++i, ++j) {
idx.put(0, j, hhist[i]);
}
for (int x = 0; x < lowData.cols(); x++) {
for (int y = 0; y < lowData.rows(); y++, ++j) {
float val = lowData.ptr(x, y).get(0) & 0xFF;
idx.put(0, j, val);
}
}
return out;
}
/**
* 显示图像
* @param title
* @param src
*/
public static void showImage(final String title, final Mat src) {
if (src != null) {
opencv_highgui.imshow(title, src);
opencv_highgui.cvWaitKey(0);
}
}
}