You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pp6hrvtlm/util/PlateUtil.java

547 lines
16 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

package com.yuxue.util;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.Set;
import java.util.Vector;
import java.util.Map.Entry;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.ml.ANN_MLP;
import org.opencv.ml.SVM;
import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import com.yuxue.constant.Constant;
import com.yuxue.enumtype.Direction;
import com.yuxue.enumtype.PlateColor;
import com.yuxue.train.SVMTrain;
/**
* 车牌处理工具类
* 车牌切图按字符分割
* 字符识别
* 未完成
* @author yuxue
* @date 2020-05-28 15:11
*/
public class PlateUtil {
// 车牌定位处理步骤该map用于表示步骤图片的顺序
private static Map<String, Integer> debugMap = Maps.newLinkedHashMap();
static {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
debugMap.put("platePredict", 0);
debugMap.put("colorMatch", 0);
debugMap.put("plateThreshold", 0);
debugMap.put("plateContours", 0);
debugMap.put("plateRect", 0);
debugMap.put("plateCrop", 0);
debugMap.put("char_clearLiuDing", 0); // 去除柳钉
debugMap.put("specMat", 0);
debugMap.put("chineseMat", 0);
debugMap.put("char_auxRoi", 0);
// 设置index 用于debug生成文件时候按名称排序
Integer index = 200;
for (Entry<String, Integer> entry : debugMap.entrySet()) {
entry.setValue(index);
index ++;
}
// 这个位置加载模型文件会报错,暂时没时间定位啥问题报错
/*loadSvmModel("D:/PlateDetect/train/plate_detect_svm/svm2.xml");
loadAnnModel("D:/PlateDetect/train/chars_recognise_ann/ann.xml");*/
}
private static SVM svm = SVM.create();
private static ANN_MLP ann=ANN_MLP.create();
public static void loadSvmModel(String path) {
svm.clear();
svm=SVM.load(path);
}
// 加载ann配置文件 图像转文字的训练库文件
public static void loadAnnModel(String path) {
ann.clear();
ann = ANN_MLP.load(path);
}
public static void main(String[] args) {
/*System.err.println(PalteUtil.isPlate("粤AI234K"));
System.err.println(PalteUtil.isPlate("鄂CD3098"));*/
}
/**
* 根据正则表达式判断字符串是否是车牌
* @param str
* @return
*/
public static Boolean isPlate(String str) {
Pattern p = Pattern.compile(Constant.plateReg);
Boolean bl = false;
Matcher m = p.matcher(str);
while(m.find()) {
bl = true;
break;
}
return bl;
}
/**
* 输入车牌切图集合,判断是否包含车牌
* @param inMat
* @param dst 包含车牌的图块
*/
public static void hasPlate(Vector<Mat> inMat, Vector<Mat> dst, Boolean debug, String tempPath) {
int i = 0;
for (Mat src : inMat) {
if(src.rows() == Constant.DEFAULT_HEIGHT && src.cols() == Constant.DEFAULT_WIDTH) {
Mat samples = SVMTrain.getFeature(src);
float flag = svm.predict(samples);
if (flag == 0) {
dst.add(src);
if(debug) {
System.err.println("目标符合");
Imgcodecs.imwrite(tempPath + debugMap.get("platePredict") + "_platePredict" + i + ".png", src);
}
i++;
} else {
System.out.println("目标不符合");
}
} else {
System.err.println("非法图块");
}
}
return;
}
/**
* 判断切图车牌颜色
* @param inMat
* @return
*/
public static PlateColor getPlateColor(Mat inMat, Boolean adaptive_minsv, Boolean debug, String tempPath) {
// 判断阈值
final float thresh = 0.70f;
if(colorMatch(inMat, PlateColor.GREEN, adaptive_minsv, debug, tempPath) > thresh) {
return PlateColor.GREEN;
}
if(colorMatch(inMat, PlateColor.YELLOW, adaptive_minsv, debug, tempPath) > thresh) {
return PlateColor.YELLOW;
}
if(colorMatch(inMat, PlateColor.BLUE, adaptive_minsv, debug, tempPath) > thresh) {
return PlateColor.BLUE;
}
return PlateColor.UNKNOWN;
}
/**
* 颜色匹配计算
* @param inMat
* @param r
* @param adaptive_minsv
* @param debug
* @param tempPath
* @return
*/
public static Float colorMatch(Mat inMat, PlateColor r, Boolean adaptive_minsv, Boolean debug, String tempPath) {
final float max_sv = 255;
final float minref_sv = 64;
final float minabs_sv = 95;
Mat hsvMat = ImageUtil.rgb2Hsv(inMat, debug, tempPath);
// 匹配模板基色,切换以查找想要的基色
int min_h = r.minH;
int max_h = r.maxH;
float diff_h = (float) ((max_h - min_h) / 2);
int avg_h = (int) (min_h + diff_h);
for (int i = 0; i < hsvMat.rows(); ++i) {
for (int j = 0; j < hsvMat.cols(); j += 3) {
int H = (int)hsvMat.get(i, j)[0];
int S = (int)hsvMat.get(i, j)[1];
int V = (int)hsvMat.get(i, j)[2];
boolean colorMatched = false;
if ( min_h < H && H <= max_h) {
int Hdiff = Math.abs(H - avg_h);
float Hdiff_p = Hdiff / diff_h;
float min_sv = 0;
if (adaptive_minsv) {
min_sv = minref_sv - minref_sv / 2 * (1 - Hdiff_p);
} else {
min_sv = minabs_sv;
}
if ((min_sv < S && S <= max_sv) && (min_sv < V && V <= max_sv)) {
colorMatched = true;
}
}
if (colorMatched == true) {
hsvMat.put(i, j, 0, 0, 255);
} else {
hsvMat.put(i, j, 0, 0, 0);
}
}
}
// 获取颜色匹配后的二值灰度图
List<Mat> hsvSplit = Lists.newArrayList();
Core.split(hsvMat, hsvSplit);
Mat gray = hsvSplit.get(2);
float percent = (float) Core.countNonZero(gray) / (gray.rows() * gray.cols());
if (debug) {
Imgcodecs.imwrite(tempPath + debugMap.get("colorMatch") + "_colorMatch.jpg", gray);
}
return percent;
}
/**
* 车牌切图,分割成单个字符切图
* @param inMat 输入原始图像
* @param charMat 返回字符切图vector
* @param debug
* @param tempPath
*/
public static final int DEFAULT_ANGLE = 30; // 角度判断所用常量
public static void charsSegment(Mat inMat, PlateColor color, Vector<Mat> charMat, Boolean debug, String tempPath) {
Mat gray = new Mat();
Imgproc.cvtColor(inMat, gray, Imgproc.COLOR_BGR2GRAY);
Mat threshold = new Mat();
switch (color) {
case BLUE:
Imgproc.threshold(gray, threshold, 10, 255, Imgproc.THRESH_OTSU + Imgproc.THRESH_BINARY);
break;
case YELLOW:
Imgproc.threshold(gray, threshold, 10, 255, Imgproc.THRESH_OTSU + Imgproc.THRESH_BINARY_INV);
break;
case GREEN:
Imgproc.threshold(gray, threshold, 10, 255, Imgproc.THRESH_OTSU + Imgproc.THRESH_BINARY_INV);
break;
default:
return;
}
// 图片处理,降噪等
if (debug) {
Imgcodecs.imwrite(tempPath + debugMap.get("plateThreshold") + "_plateThreshold.jpg", threshold);
}
// 获取轮廓
Mat contour = new Mat();
threshold.copyTo(contour);
List<MatOfPoint> contours = Lists.newArrayList();
// 提取外部轮廓
Imgproc.findContours(contour, contours, new Mat(), Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_NONE);
if (debug) {
Mat result = new Mat();
inMat.copyTo(result);
Imgproc.drawContours(result, contours, -1, new Scalar(0, 0, 255, 255));
Imgcodecs.imwrite(tempPath + debugMap.get("plateContours") + "_plateContours.jpg", result);
}
Vector<Rect> rt = new Vector<Rect>();
for (int i = 0; i < contours.size(); i++) {
Rect mr = Imgproc.boundingRect(contours.get(i));
/*if(debug) {
Mat mat = new Mat(threshold, mr);
Imgcodecs.imwrite(tempPath + debugMap.get("plateRect") + "_plateRect_" + i + ".jpg", mat);
}*/
if (checkCharSizes(mr)) {
rt.add(mr);
}
}
if(null == rt || rt.size() <= 0) {
return;
}
Vector<Rect> sorted = new Vector<Rect>();
sortRect(rt, sorted);
String plate = "";
Vector<Mat> dst = new Vector<Mat>();
for (int i = 0; i < sorted.size(); i++) {
Mat img_crop = new Mat(threshold, sorted.get(i));
img_crop = preprocessChar(img_crop);
dst.add(img_crop);
if(debug) {
Imgcodecs.imwrite(tempPath + debugMap.get("plateCrop") + "_plateCrop_" + i + ".jpg", img_crop);
}
Mat f = features(img_crop, Constant.predictSize);
// 字符预测
Mat output = new Mat(1, 140, CvType.CV_32F);
int index = (int) ann.predict(f, output, 0);
if (index < Constant.numCharacter) {
plate += String.valueOf(Constant.strCharacters[index]);
} else {
String s = Constant.strChinese[index - Constant.numCharacter];
plate += Constant.KEY_CHINESE_MAP.get(s);
}
}
System.err.println("===>" + plate);
return;
}
/**
* 字符预处理: 统一每个字符的大小
* @param in
* @return
*/
final static int CHAR_SIZE = 20;
private static Mat preprocessChar(Mat in) {
int h = in.rows();
int w = in.cols();
Mat transformMat = Mat.eye(2, 3, CvType.CV_32F);
int m = Math.max(w, h);
transformMat.put(0, 2, (m - w) / 2f);
transformMat.put(1, 2, (m - h) / 2f);
Mat warpImage = new Mat(m, m, in.type());
Imgproc.warpAffine(in, warpImage, transformMat, warpImage.size(), Imgproc.INTER_LINEAR, Core.BORDER_CONSTANT, new Scalar(0));
Mat resized = new Mat(CHAR_SIZE, CHAR_SIZE, CvType.CV_8UC3);
Imgproc.resize(warpImage, resized, resized.size(), 0, 0, Imgproc.INTER_CUBIC);
return resized;
}
/**
* 字符尺寸验证;去掉尺寸不符合的图块
* 此处计算宽高比意义不大,因为字符 1 的宽高比干扰就已经很大了
* @param r
* @return
*/
public static Boolean checkCharSizes(Rect r) {
float minHeight = 15f;
float maxHeight = 35f;
double charAspect = r.size().width / r.size().height;
return charAspect <1 && minHeight <= r.size().height && r.size().height < maxHeight;
}
/**
* 将Rect按位置从左到右进行排序
* @param vecRect
* @param out
* @return
*/
public static void sortRect(Vector<Rect> vecRect, Vector<Rect> out) {
Map<Integer, Integer> map = Maps.newHashMap();
for (int i = 0; i < vecRect.size(); ++i) {
map.put(vecRect.get(i).x, i);
}
Set<Integer> set = map.keySet();
Object[] arr = set.toArray();
Arrays.sort(arr);
for (Object key : arr) {
out.add(vecRect.get(map.get(key)));
}
return;
}
public static float[] projectedHistogram(final Mat img, Direction direction) {
int sz = 0;
switch (direction) {
case HORIZONTAL:
sz = img.rows();
break;
case VERTICAL:
sz = img.cols();
break;
default:
break;
}
// 统计这一行或一列中非零元素的个数并保存到nonZeroMat中
float[] nonZeroMat = new float[sz];
Core.extractChannel(img, img, 0);
for (int j = 0; j < sz; j++) {
Mat data = (direction == Direction.HORIZONTAL) ? img.row(j) : img.col(j);
int count = Core.countNonZero(data);
nonZeroMat[j] = count;
}
// Normalize histogram
float max = 0;
for (int j = 0; j < nonZeroMat.length; ++j) {
max = Math.max(max, nonZeroMat[j]);
}
if (max > 0) {
for (int j = 0; j < nonZeroMat.length; ++j) {
nonZeroMat[j] /= max;
}
}
return nonZeroMat;
}
public static Mat features(Mat in, int sizeData) {
float[] vhist = projectedHistogram(in, Direction.VERTICAL);
float[] hhist = projectedHistogram(in, Direction.HORIZONTAL);
Mat lowData = new Mat();
if (sizeData > 0) {
Imgproc.resize(in, lowData, new Size(sizeData, sizeData));
}
int numCols = vhist.length + hhist.length + lowData.cols() * lowData.rows();
Mat out = new Mat(1, numCols, CvType.CV_32F);
int j = 0;
for (int i = 0; i < vhist.length; ++i, ++j) {
out.put(0, j, vhist[i]);
}
for (int i = 0; i < hhist.length; ++i, ++j) {
out.put(0, j, hhist[i]);
}
for (int x = 0; x < lowData.cols(); x++) {
for (int y = 0; y < lowData.rows(); y++, ++j) {
double[] val = lowData.get(x, y);
out.put(0, j, val[0]);
}
}
return out;
}
/**
* 进行膨胀操作
* @param inMat
* @return
*/
public static Mat dilate(Mat inMat) {
Mat result = inMat.clone();
Mat element = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(2, 2));
Imgproc.dilate(inMat, result, element);
return result;
}
/**
* 进行腐蚀操作
* @param inMat
* @return
*/
public static Mat erode(Mat inMat) {
Mat result = inMat.clone();
Mat element = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(2, 2));
Imgproc.erode(inMat, result, element);
return result;
}
/**
* 随机数平移
* @param inMat
* @return
*/
public static Mat randTranslate(Mat inMat) {
Random rand = new Random();
Mat result = inMat.clone();
int ran_x = rand.nextInt(10000) % 5 - 2; // 控制在-2~3个像素范围内
int ran_y = rand.nextInt(10000) % 5 - 2;
return translateImg(result, ran_x, ran_y);
}
/**
* 随机数旋转
* @param inMat
* @return
*/
public static Mat randRotate(Mat inMat) {
Random rand = new Random();
Mat result = inMat.clone();
float angle = (float) (rand.nextInt(10000) % 15 - 7); // 旋转角度控制在-7~8°范围内
return rotateImg(result, angle);
}
/**
* 平移
* @param img
* @param offsetx
* @param offsety
* @return
*/
public static Mat translateImg(Mat img, int offsetx, int offsety){
Mat dst = new Mat();
//定义平移矩阵
Mat trans_mat = Mat.zeros(2, 3, CvType.CV_32FC1);
trans_mat.put(0, 0, 1);
trans_mat.put(0, 2, offsetx);
trans_mat.put(1, 1, 1);
trans_mat.put(1, 2, offsety);
Imgproc.warpAffine(img, dst, trans_mat, img.size()); // 仿射变换
return dst;
}
/**
* 旋转角度
* @param source
* @param angle
* @return
*/
public static Mat rotateImg(Mat source, float angle){
Point src_center = new Point(source.cols() / 2.0F, source.rows() / 2.0F);
Mat rot_mat = Imgproc.getRotationMatrix2D(src_center, angle, 1);
Mat dst = new Mat();
// 仿射变换 可以考虑使用投影变换; 这里使用放射变换进行旋转,对于实际效果来说感觉意义不大,反而会干扰结果预测
Imgproc.warpAffine(source, dst, rot_mat, source.size());
return dst;
}
}