xxx 6 months ago
parent d0e4d0b7c9
commit b85c2c8609

@ -0,0 +1,140 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Awesome-pyecharts</title>
<script type="text/javascript" src="https://assets.pyecharts.org/assets/echarts.min.js"></script>
<script type="text/javascript" src="https://assets.pyecharts.org/assets/themes/infographic.js"></script>
</head>
<body>
<div id="cf9171b428624c54bc4aff53cf3f918d" class="chart-container" style="width:900px; height:500px;"></div>
<script>
var chart_cf9171b428624c54bc4aff53cf3f918d = echarts.init(
document.getElementById('cf9171b428624c54bc4aff53cf3f918d'), 'infographic', {renderer: 'canvas'});
var option_cf9171b428624c54bc4aff53cf3f918d = {
"animation": true,
"animationThreshold": 2000,
"animationDuration": 1000,
"animationEasing": "cubicOut",
"animationDelay": 0,
"animationDurationUpdate": 300,
"animationEasingUpdate": "cubicOut",
"animationDelayUpdate": 0,
"series": [
{
"type": "pie",
"name": "\u516c\u53f8\u7c7b\u578b\u73af\u5f62\u56fe",
"clockwise": true,
"data": [
{
"name": "\u4e0a\u5e02\u516c\u53f8",
"value": 192
},
{
"name": "\u4e8b\u4e1a\u5355\u4f4d",
"value": 2
},
{
"name": "\u5176\u5b83",
"value": 71
},
{
"name": "\u5408\u8d44",
"value": 39
},
{
"name": "\u56fd\u4f01",
"value": 80
},
{
"name": "\u5916\u5546\u72ec\u8d44",
"value": 289
},
{
"name": "\u6c11\u8425",
"value": 714
},
{
"name": "\u6e2f\u6fb3\u53f0\u516c\u53f8",
"value": 4
},
{
"name": "\u80a1\u4efd\u5236\u4f01\u4e1a",
"value": 132
}
],
"radius": [
"20%",
"40%"
],
"center": [
"50%",
"40%"
],
"label": {
"show": true,
"position": "top",
"margin": 8,
"formatter": "{b}:{d}%"
}
}
],
"legend": [
{
"data": [
"\u4e0a\u5e02\u516c\u53f8",
"\u4e8b\u4e1a\u5355\u4f4d",
"\u5176\u5b83",
"\u5408\u8d44",
"\u56fd\u4f01",
"\u5916\u5546\u72ec\u8d44",
"\u6c11\u8425",
"\u6e2f\u6fb3\u53f0\u516c\u53f8",
"\u80a1\u4efd\u5236\u4f01\u4e1a"
],
"selected": {},
"show": true,
"left": "15%",
"top": "15%",
"orient": "vertical",
"padding": 5,
"itemGap": 10,
"itemWidth": 25,
"itemHeight": 14
}
],
"tooltip": {
"show": true,
"trigger": "item",
"triggerOn": "mousemove|click",
"axisPointer": {
"type": "line"
},
"showContent": true,
"alwaysShowContent": false,
"showDelay": 0,
"hideDelay": 100,
"textStyle": {
"fontSize": 14
},
"borderWidth": 0,
"padding": 5
},
"title": [
{
"text": "\u516c\u53f8\u7c7b\u578b",
"left": "35%",
"top": "3%",
"padding": 5,
"itemGap": 10,
"textStyle": {
"fontSize": 25
}
}
]
};
chart_cf9171b428624c54bc4aff53cf3f918d.setOption(option_cf9171b428624c54bc4aff53cf3f918d);
</script>
</body>
</html>

@ -0,0 +1,31 @@
import pandas as pd
from pyecharts.charts import Pie
from pyecharts import options as opts
from pyecharts.globals import ThemeType
data = [
["上市公司", 192],
["事业单位", 2],
[ "其它", 71],
[ "合资", 39],
[ "国企", 80],
[ "外商独资", 289],
[ "民营", 714],
[ "港澳台公司", 4],
[ "股份制企业", 132]
]
pie=Pie(init_opts=opts.InitOpts(theme=ThemeType.INFOGRAPHIC))\
.add("公司类型环形图",
data,
radius=["20%","40%"],
center=['50%','40%'],
label_opts=opts.LabelOpts(formatter='{b}:{d}%')
)\
.set_global_opts(
title_opts=opts.TitleOpts('公司类型',pos_left="35%",pos_top="3%",
title_textstyle_opts=opts.TextStyleOpts(font_size=25)),
legend_opts=opts.LegendOpts(orient="vertical",pos_left='15%',pos_top='15%')
)
pie.render("公司类型环形图.html")

@ -0,0 +1,42 @@
import matplotlib.pyplot as plt
import pandas as pd
# 解决中文乱码
plt.rcParams['font.sans-serif'] = ['SimHei']
# 创建画布
plt.figure()
data=pd.read_csv("最新数据.csv")
# 将城市这一列数据提取出来
city = data[["城市",'职位名称']]
# 将城市列去重后转化为列表变成x轴数据
x_data = data['城市'].drop_duplicates().tolist()
x_data=x_data[:10]
# print(x_data)
# 将城市进行分组计数变为y轴数据
y_data = city.groupby('城市').count().reset_index()
y_data = y_data['职位名称'].tolist()
y_data.sort(reverse=True)
y_data=y_data[:10]
plt.bar(x_data, y_data,
width=0.5,
color='#9fe080',
align="center",
)
# 显示数据标签
for a,b in zip(x_data,y_data):
plt.text(
a, #标签的x坐标
b, #标签的y坐标
b, #标签的内容
ha='center',
va='bottom',
fontsize=10)
plt.title("就业机会前十的城市")
plt.xlabel("城市")
plt.show()
Loading…
Cancel
Save