diff --git a/src/PaddleClas/MANIFEST.in b/src/PaddleClas/MANIFEST.in new file mode 100644 index 0000000..b0a4f6d --- /dev/null +++ b/src/PaddleClas/MANIFEST.in @@ -0,0 +1,7 @@ +include LICENSE.txt +include README.md +include docs/en/whl_en.md +recursive-include deploy/python predict_cls.py preprocess.py postprocess.py det_preprocess.py +recursive-include deploy/utils get_image_list.py config.py logger.py predictor.py + +recursive-include ppcls/ *.py *.txt \ No newline at end of file diff --git a/src/PaddleClas/__init__.py b/src/PaddleClas/__init__.py new file mode 100644 index 0000000..2128a6c --- /dev/null +++ b/src/PaddleClas/__init__.py @@ -0,0 +1,17 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +__all__ = ['PaddleClas'] +from .paddleclas import PaddleClas +from ppcls.arch.backbone import * diff --git a/src/PaddleClas/hubconf.py b/src/PaddleClas/hubconf.py new file mode 100644 index 0000000..b7f7674 --- /dev/null +++ b/src/PaddleClas/hubconf.py @@ -0,0 +1,788 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +dependencies = ['paddle'] + +import paddle +import os +import sys + + +class _SysPathG(object): + """ + _SysPathG used to add/clean path for sys.path. Making sure minimal pkgs dependents by skiping parent dirs. + + __enter__ + add path into sys.path + __exit__ + clean user's sys.path to avoid unexpect behaviors + """ + + def __init__(self, path): + self.path = path + + def __enter__(self, ): + sys.path.insert(0, self.path) + + def __exit__(self, type, value, traceback): + _p = sys.path.pop(0) + assert _p == self.path, 'Make sure sys.path cleaning {} correctly.'.format( + self.path) + + +with _SysPathG(os.path.dirname(os.path.abspath(__file__)), ): + import ppcls + import ppcls.arch.backbone as backbone + + def ppclas_init(): + if ppcls.utils.logger._logger is None: + ppcls.utils.logger.init_logger() + + ppclas_init() + + def _load_pretrained_parameters(model, name): + url = 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/{}_pretrained.pdparams'.format( + name) + path = paddle.utils.download.get_weights_path_from_url(url) + model.set_state_dict(paddle.load(path)) + return model + + def alexnet(pretrained=False, **kwargs): + """ + AlexNet + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `AlexNet` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.AlexNet(**kwargs) + + return model + + def vgg11(pretrained=False, **kwargs): + """ + VGG11 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` + Returns: + model: nn.Layer. Specific `VGG11` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.VGG11(**kwargs) + + return model + + def vgg13(pretrained=False, **kwargs): + """ + VGG13 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` + Returns: + model: nn.Layer. Specific `VGG13` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.VGG13(**kwargs) + + return model + + def vgg16(pretrained=False, **kwargs): + """ + VGG16 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` + Returns: + model: nn.Layer. Specific `VGG16` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.VGG16(**kwargs) + + return model + + def vgg19(pretrained=False, **kwargs): + """ + VGG19 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` + Returns: + model: nn.Layer. Specific `VGG19` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.VGG19(**kwargs) + + return model + + def resnet18(pretrained=False, **kwargs): + """ + ResNet18 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + input_image_channel: int=3. The number of input image channels + data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') + Returns: + model: nn.Layer. Specific `ResNet18` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.ResNet18(**kwargs) + + return model + + def resnet34(pretrained=False, **kwargs): + """ + ResNet34 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + input_image_channel: int=3. The number of input image channels + data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') + Returns: + model: nn.Layer. Specific `ResNet34` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.ResNet34(**kwargs) + + return model + + def resnet50(pretrained=False, **kwargs): + """ + ResNet50 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + input_image_channel: int=3. The number of input image channels + data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') + Returns: + model: nn.Layer. Specific `ResNet50` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.ResNet50(**kwargs) + + return model + + def resnet101(pretrained=False, **kwargs): + """ + ResNet101 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + input_image_channel: int=3. The number of input image channels + data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') + Returns: + model: nn.Layer. Specific `ResNet101` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.ResNet101(**kwargs) + + return model + + def resnet152(pretrained=False, **kwargs): + """ + ResNet152 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + input_image_channel: int=3. The number of input image channels + data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') + Returns: + model: nn.Layer. Specific `ResNet152` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.ResNet152(**kwargs) + + return model + + def squeezenet1_0(pretrained=False, **kwargs): + """ + SqueezeNet1_0 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `SqueezeNet1_0` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.SqueezeNet1_0(**kwargs) + + return model + + def squeezenet1_1(pretrained=False, **kwargs): + """ + SqueezeNet1_1 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `SqueezeNet1_1` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.SqueezeNet1_1(**kwargs) + + return model + + def densenet121(pretrained=False, **kwargs): + """ + DenseNet121 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + dropout: float=0. Probability of setting units to zero. + bn_size: int=4. The number of channals per group + Returns: + model: nn.Layer. Specific `DenseNet121` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.DenseNet121(**kwargs) + + return model + + def densenet161(pretrained=False, **kwargs): + """ + DenseNet161 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + dropout: float=0. Probability of setting units to zero. + bn_size: int=4. The number of channals per group + Returns: + model: nn.Layer. Specific `DenseNet161` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.DenseNet161(**kwargs) + + return model + + def densenet169(pretrained=False, **kwargs): + """ + DenseNet169 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + dropout: float=0. Probability of setting units to zero. + bn_size: int=4. The number of channals per group + Returns: + model: nn.Layer. Specific `DenseNet169` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.DenseNet169(**kwargs) + + return model + + def densenet201(pretrained=False, **kwargs): + """ + DenseNet201 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + dropout: float=0. Probability of setting units to zero. + bn_size: int=4. The number of channals per group + Returns: + model: nn.Layer. Specific `DenseNet201` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.DenseNet201(**kwargs) + + return model + + def densenet264(pretrained=False, **kwargs): + """ + DenseNet264 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + dropout: float=0. Probability of setting units to zero. + bn_size: int=4. The number of channals per group + Returns: + model: nn.Layer. Specific `DenseNet264` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.DenseNet264(**kwargs) + + return model + + def inceptionv3(pretrained=False, **kwargs): + """ + InceptionV3 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `InceptionV3` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.InceptionV3(**kwargs) + + return model + + def inceptionv4(pretrained=False, **kwargs): + """ + InceptionV4 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `InceptionV4` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.InceptionV4(**kwargs) + + return model + + def googlenet(pretrained=False, **kwargs): + """ + GoogLeNet + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `GoogLeNet` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.GoogLeNet(**kwargs) + + return model + + def shufflenetv2_x0_25(pretrained=False, **kwargs): + """ + ShuffleNetV2_x0_25 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `ShuffleNetV2_x0_25` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.ShuffleNetV2_x0_25(**kwargs) + + return model + + def mobilenetv1(pretrained=False, **kwargs): + """ + MobileNetV1 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV1` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV1(**kwargs) + + return model + + def mobilenetv1_x0_25(pretrained=False, **kwargs): + """ + MobileNetV1_x0_25 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV1_x0_25(**kwargs) + + return model + + def mobilenetv1_x0_5(pretrained=False, **kwargs): + """ + MobileNetV1_x0_5 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV1_x0_5(**kwargs) + + return model + + def mobilenetv1_x0_75(pretrained=False, **kwargs): + """ + MobileNetV1_x0_75 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV1_x0_75(**kwargs) + + return model + + def mobilenetv2_x0_25(pretrained=False, **kwargs): + """ + MobileNetV2_x0_25 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV2_x0_25` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV2_x0_25(**kwargs) + + return model + + def mobilenetv2_x0_5(pretrained=False, **kwargs): + """ + MobileNetV2_x0_5 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV2_x0_5` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV2_x0_5(**kwargs) + + return model + + def mobilenetv2_x0_75(pretrained=False, **kwargs): + """ + MobileNetV2_x0_75 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV2_x0_75` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV2_x0_75(**kwargs) + + return model + + def mobilenetv2_x1_5(pretrained=False, **kwargs): + """ + MobileNetV2_x1_5 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV2_x1_5` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV2_x1_5(**kwargs) + + return model + + def mobilenetv2_x2_0(pretrained=False, **kwargs): + """ + MobileNetV2_x2_0 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV2_x2_0` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV2_x2_0(**kwargs) + + return model + + def mobilenetv3_large_x0_35(pretrained=False, **kwargs): + """ + MobileNetV3_large_x0_35 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_large_x0_35` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV3_large_x0_35(**kwargs) + + return model + + def mobilenetv3_large_x0_5(pretrained=False, **kwargs): + """ + MobileNetV3_large_x0_5 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_large_x0_5` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV3_large_x0_5(**kwargs) + + return model + + def mobilenetv3_large_x0_75(pretrained=False, **kwargs): + """ + MobileNetV3_large_x0_75 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_large_x0_75` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV3_large_x0_75(**kwargs) + + return model + + def mobilenetv3_large_x1_0(pretrained=False, **kwargs): + """ + MobileNetV3_large_x1_0 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_large_x1_0` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV3_large_x1_0(**kwargs) + + return model + + def mobilenetv3_large_x1_25(pretrained=False, **kwargs): + """ + MobileNetV3_large_x1_25 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV3_large_x1_25(**kwargs) + + return model + + def mobilenetv3_small_x0_35(pretrained=False, **kwargs): + """ + MobileNetV3_small_x0_35 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_small_x0_35` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV3_small_x0_35(**kwargs) + + return model + + def mobilenetv3_small_x0_5(pretrained=False, **kwargs): + """ + MobileNetV3_small_x0_5 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_small_x0_5` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV3_small_x0_5(**kwargs) + + return model + + def mobilenetv3_small_x0_75(pretrained=False, **kwargs): + """ + MobileNetV3_small_x0_75 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_small_x0_75` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV3_small_x0_75(**kwargs) + + return model + + def mobilenetv3_small_x1_0(pretrained=False, **kwargs): + """ + MobileNetV3_small_x1_0 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_small_x1_0` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV3_small_x1_0(**kwargs) + + return model + + def mobilenetv3_small_x1_25(pretrained=False, **kwargs): + """ + MobileNetV3_small_x1_25 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_small_x1_25` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.MobileNetV3_small_x1_25(**kwargs) + + return model + + def resnext101_32x4d(pretrained=False, **kwargs): + """ + ResNeXt101_32x4d + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `ResNeXt101_32x4d` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.ResNeXt101_32x4d(**kwargs) + + return model + + def resnext101_64x4d(pretrained=False, **kwargs): + """ + ResNeXt101_64x4d + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `ResNeXt101_64x4d` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.ResNeXt101_64x4d(**kwargs) + + return model + + def resnext152_32x4d(pretrained=False, **kwargs): + """ + ResNeXt152_32x4d + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `ResNeXt152_32x4d` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.ResNeXt152_32x4d(**kwargs) + + return model + + def resnext152_64x4d(pretrained=False, **kwargs): + """ + ResNeXt152_64x4d + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `ResNeXt152_64x4d` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.ResNeXt152_64x4d(**kwargs) + + return model + + def resnext50_32x4d(pretrained=False, **kwargs): + """ + ResNeXt50_32x4d + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `ResNeXt50_32x4d` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.ResNeXt50_32x4d(**kwargs) + + return model + + def resnext50_64x4d(pretrained=False, **kwargs): + """ + ResNeXt50_64x4d + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `ResNeXt50_64x4d` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.ResNeXt50_64x4d(**kwargs) + + return model + + def darknet53(pretrained=False, **kwargs): + """ + DarkNet53 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `ResNeXt50_64x4d` model depends on args. + """ + kwargs.update({'pretrained': pretrained}) + model = backbone.DarkNet53(**kwargs) + + return model diff --git a/src/PaddleClas/paddleclas.py b/src/PaddleClas/paddleclas.py new file mode 100644 index 0000000..bfad193 --- /dev/null +++ b/src/PaddleClas/paddleclas.py @@ -0,0 +1,572 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import sys +__dir__ = os.path.dirname(__file__) +sys.path.append(os.path.join(__dir__, "")) +sys.path.append(os.path.join(__dir__, "deploy")) + +from typing import Union, Generator +import argparse +import shutil +import textwrap +import tarfile +import requests +import warnings +from functools import partial +from difflib import SequenceMatcher + +import cv2 +import numpy as np +from tqdm import tqdm +from prettytable import PrettyTable + +from deploy.python.predict_cls import ClsPredictor +from deploy.utils.get_image_list import get_image_list +from deploy.utils import config + +from ppcls.arch.backbone import * +from ppcls.utils.logger import init_logger + +# for building model with loading pretrained weights from backbone +init_logger() + +__all__ = ["PaddleClas"] + +BASE_DIR = os.path.expanduser("~/.paddleclas/") +BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model") +BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images") +BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar" +MODEL_SERIES = { + "AlexNet": ["AlexNet"], + "DarkNet": ["DarkNet53"], + "DeiT": [ + "DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384", + "DeiT_base_patch16_224", "DeiT_base_patch16_384", + "DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224", + "DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224" + ], + "DenseNet": [ + "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201", + "DenseNet264" + ], + "DLA": [ + "DLA46_c", "DLA60x_c", "DLA34", "DLA60", "DLA60x", "DLA102", "DLA102x", + "DLA102x2", "DLA169" + ], + "DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"], + "EfficientNet": [ + "EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1", + "EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5", + "EfficientNetB6", "EfficientNetB7" + ], + "ESNet": ["ESNet_x0_25", "ESNet_x0_5", "ESNet_x0_75", "ESNet_x1_0"], + "GhostNet": + ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"], + "HarDNet": ["HarDNet39_ds", "HarDNet68_ds", "HarDNet68", "HarDNet85"], + "HRNet": [ + "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C", + "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld", + "HRNet_W48_C_ssld" + ], + "Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"], + "MixNet": ["MixNet_S", "MixNet_M", "MixNet_L"], + "MobileNetV1": [ + "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75", + "MobileNetV1", "MobileNetV1_ssld" + ], + "MobileNetV2": [ + "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75", + "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0", + "MobileNetV2_ssld" + ], + "MobileNetV3": [ + "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5", + "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0", + "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35", + "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75", + "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25", + "MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld" + ], + "PPLCNet": [ + "PPLCNet_x0_25", "PPLCNet_x0_35", "PPLCNet_x0_5", "PPLCNet_x0_75", + "PPLCNet_x1_0", "PPLCNet_x1_5", "PPLCNet_x2_0", "PPLCNet_x2_5" + ], + "RedNet": ["RedNet26", "RedNet38", "RedNet50", "RedNet101", "RedNet152"], + "RegNet": ["RegNetX_4GF"], + "Res2Net": [ + "Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s", + "Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s", + "Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld", + "Res2Net200_vd_26w_4s_ssld" + ], + "ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"], + "ResNet": [ + "ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50", + "ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101", + "ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd", + "ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2", + "ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy" + ], + "ResNeXt": [ + "ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d", + "ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d", + "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl", + "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl", + "Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d", + "ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d", + "ResNeXt152_vd_64x4d" + ], + "ReXNet": + ["ReXNet_1_0", "ReXNet_1_3", "ReXNet_1_5", "ReXNet_2_0", "ReXNet_3_0"], + "SENet": [ + "SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd", + "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d", + "SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d" + ], + "ShuffleNetV2": [ + "ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33", + "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5", + "ShuffleNetV2_x2_0" + ], + "SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"], + "SwinTransformer": [ + "SwinTransformer_large_patch4_window7_224_22kto1k", + "SwinTransformer_large_patch4_window12_384_22kto1k", + "SwinTransformer_base_patch4_window7_224_22kto1k", + "SwinTransformer_base_patch4_window12_384_22kto1k", + "SwinTransformer_base_patch4_window12_384", + "SwinTransformer_base_patch4_window7_224", + "SwinTransformer_small_patch4_window7_224", + "SwinTransformer_tiny_patch4_window7_224" + ], + "Twins": [ + "pcpvt_small", "pcpvt_base", "pcpvt_large", "alt_gvt_small", + "alt_gvt_base", "alt_gvt_large" + ], + "VGG": ["VGG11", "VGG13", "VGG16", "VGG19"], + "VisionTransformer": [ + "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384", + "ViT_large_patch16_224", "ViT_large_patch16_384", + "ViT_large_patch32_384", "ViT_small_patch16_224" + ], + "Xception": [ + "Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab", + "Xception71" + ] +} + + +class ImageTypeError(Exception): + """ImageTypeError. + """ + + def __init__(self, message=""): + super().__init__(message) + + +class InputModelError(Exception): + """InputModelError. + """ + + def __init__(self, message=""): + super().__init__(message) + + +def init_config(model_name, + inference_model_dir, + use_gpu=True, + batch_size=1, + topk=5, + **kwargs): + imagenet1k_map_path = os.path.join( + os.path.abspath(__dir__), "ppcls/utils/imagenet1k_label_list.txt") + cfg = { + "Global": { + "infer_imgs": kwargs["infer_imgs"] + if "infer_imgs" in kwargs else False, + "model_name": model_name, + "inference_model_dir": inference_model_dir, + "batch_size": batch_size, + "use_gpu": use_gpu, + "enable_mkldnn": kwargs["enable_mkldnn"] + if "enable_mkldnn" in kwargs else False, + "cpu_num_threads": kwargs["cpu_num_threads"] + if "cpu_num_threads" in kwargs else 1, + "enable_benchmark": False, + "use_fp16": kwargs["use_fp16"] if "use_fp16" in kwargs else False, + "ir_optim": True, + "use_tensorrt": kwargs["use_tensorrt"] + if "use_tensorrt" in kwargs else False, + "gpu_mem": kwargs["gpu_mem"] if "gpu_mem" in kwargs else 8000, + "enable_profile": False + }, + "PreProcess": { + "transform_ops": [{ + "ResizeImage": { + "resize_short": kwargs["resize_short"] + if "resize_short" in kwargs else 256 + } + }, { + "CropImage": { + "size": kwargs["crop_size"] + if "crop_size" in kwargs else 224 + } + }, { + "NormalizeImage": { + "scale": 0.00392157, + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "order": '' + } + }, { + "ToCHWImage": None + }] + }, + "PostProcess": { + "main_indicator": "Topk", + "Topk": { + "topk": topk, + "class_id_map_file": imagenet1k_map_path + } + } + } + if "save_dir" in kwargs: + if kwargs["save_dir"] is not None: + cfg["PostProcess"]["SavePreLabel"] = { + "save_dir": kwargs["save_dir"] + } + if "class_id_map_file" in kwargs: + if kwargs["class_id_map_file"] is not None: + cfg["PostProcess"]["Topk"]["class_id_map_file"] = kwargs[ + "class_id_map_file"] + + cfg = config.AttrDict(cfg) + config.create_attr_dict(cfg) + return cfg + + +def args_cfg(): + def str2bool(v): + return v.lower() in ("true", "t", "1") + + parser = argparse.ArgumentParser() + parser.add_argument( + "--infer_imgs", + type=str, + required=True, + help="The image(s) to be predicted.") + parser.add_argument( + "--model_name", type=str, help="The model name to be used.") + parser.add_argument( + "--inference_model_dir", + type=str, + help="The directory of model files. Valid when model_name not specifed." + ) + parser.add_argument( + "--use_gpu", type=str, default=True, help="Whether use GPU.") + parser.add_argument("--gpu_mem", type=int, default=8000, help="") + parser.add_argument( + "--enable_mkldnn", + type=str2bool, + default=False, + help="Whether use MKLDNN. Valid when use_gpu is False") + parser.add_argument("--cpu_num_threads", type=int, default=1, help="") + parser.add_argument( + "--use_tensorrt", type=str2bool, default=False, help="") + parser.add_argument("--use_fp16", type=str2bool, default=False, help="") + parser.add_argument( + "--batch_size", type=int, default=1, help="Batch size. Default by 1.") + parser.add_argument( + "--topk", + type=int, + default=5, + help="Return topk score(s) and corresponding results. Default by 5.") + parser.add_argument( + "--class_id_map_file", + type=str, + help="The path of file that map class_id and label.") + parser.add_argument( + "--save_dir", + type=str, + help="The directory to save prediction results as pre-label.") + parser.add_argument( + "--resize_short", + type=int, + default=256, + help="Resize according to short size.") + parser.add_argument( + "--crop_size", type=int, default=224, help="Centor crop size.") + + args = parser.parse_args() + return vars(args) + + +def print_info(): + """Print list of supported models in formatted. + """ + table = PrettyTable(["Series", "Name"]) + try: + sz = os.get_terminal_size() + width = sz.columns - 30 if sz.columns > 50 else 10 + except OSError: + width = 100 + for series in MODEL_SERIES: + names = textwrap.fill(" ".join(MODEL_SERIES[series]), width=width) + table.add_row([series, names]) + width = len(str(table).split("\n")[0]) + print("{}".format("-" * width)) + print("Models supported by PaddleClas".center(width)) + print(table) + print("Powered by PaddlePaddle!".rjust(width)) + print("{}".format("-" * width)) + + +def get_model_names(): + """Get the model names list. + """ + model_names = [] + for series in MODEL_SERIES: + model_names += (MODEL_SERIES[series]) + return model_names + + +def similar_architectures(name="", names=[], thresh=0.1, topk=10): + """Find the most similar topk model names. + """ + scores = [] + for idx, n in enumerate(names): + if n.startswith("__"): + continue + score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio() + if score > thresh: + scores.append((idx, score)) + scores.sort(key=lambda x: x[1], reverse=True) + similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]] + return similar_names + + +def download_with_progressbar(url, save_path): + """Download from url with progressbar. + """ + if os.path.isfile(save_path): + os.remove(save_path) + response = requests.get(url, stream=True) + total_size_in_bytes = int(response.headers.get("content-length", 0)) + block_size = 1024 # 1 Kibibyte + progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True) + with open(save_path, "wb") as file: + for data in response.iter_content(block_size): + progress_bar.update(len(data)) + file.write(data) + progress_bar.close() + if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile( + save_path): + raise Exception( + f"Something went wrong while downloading file from {url}") + + +def check_model_file(model_name): + """Check the model files exist and download and untar when no exist. + """ + storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR, + model_name) + url = BASE_DOWNLOAD_URL.format(model_name) + + tar_file_name_list = [ + "inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel" + ] + model_file_path = storage_directory("inference.pdmodel") + params_file_path = storage_directory("inference.pdiparams") + if not os.path.exists(model_file_path) or not os.path.exists( + params_file_path): + tmp_path = storage_directory(url.split("/")[-1]) + print(f"download {url} to {tmp_path}") + os.makedirs(storage_directory(), exist_ok=True) + download_with_progressbar(url, tmp_path) + with tarfile.open(tmp_path, "r") as tarObj: + for member in tarObj.getmembers(): + filename = None + for tar_file_name in tar_file_name_list: + if tar_file_name in member.name: + filename = tar_file_name + if filename is None: + continue + file = tarObj.extractfile(member) + with open(storage_directory(filename), "wb") as f: + f.write(file.read()) + os.remove(tmp_path) + if not os.path.exists(model_file_path) or not os.path.exists( + params_file_path): + raise Exception( + f"Something went wrong while praparing the model[{model_name}] files!" + ) + + return storage_directory() + + +class PaddleClas(object): + """PaddleClas. + """ + + print_info() + + def __init__(self, + model_name: str=None, + inference_model_dir: str=None, + use_gpu: bool=True, + batch_size: int=1, + topk: int=5, + **kwargs): + """Init PaddleClas with config. + + Args: + model_name (str, optional): The model name supported by PaddleClas. If specified, override config. Defaults to None. + inference_model_dir (str, optional): The directory that contained model file and params file to be used. If specified, override config. Defaults to None. + use_gpu (bool, optional): Whether use GPU. If specified, override config. Defaults to True. + batch_size (int, optional): The batch size to pridict. If specified, override config. Defaults to 1. + topk (int, optional): Return the top k prediction results with the highest score. Defaults to 5. + """ + super().__init__() + self._config = init_config(model_name, inference_model_dir, use_gpu, + batch_size, topk, **kwargs) + self._check_input_model() + self.cls_predictor = ClsPredictor(self._config) + + def get_config(self): + """Get the config. + """ + return self._config + + def _check_input_model(self): + """Check input model name or model files. + """ + candidate_model_names = get_model_names() + input_model_name = self._config.Global.get("model_name", None) + inference_model_dir = self._config.Global.get("inference_model_dir", + None) + if input_model_name is not None: + similar_names = similar_architectures(input_model_name, + candidate_model_names) + similar_names_str = ", ".join(similar_names) + if input_model_name not in candidate_model_names: + err = f"{input_model_name} is not provided by PaddleClas. \nMaybe you want: [{similar_names_str}]. \nIf you want to use your own model, please specify inference_model_dir!" + raise InputModelError(err) + self._config.Global.inference_model_dir = check_model_file( + input_model_name) + return + elif inference_model_dir is not None: + model_file_path = os.path.join(inference_model_dir, + "inference.pdmodel") + params_file_path = os.path.join(inference_model_dir, + "inference.pdiparams") + if not os.path.isfile(model_file_path) or not os.path.isfile( + params_file_path): + err = f"There is no model file or params file in this directory: {inference_model_dir}" + raise InputModelError(err) + return + else: + err = f"Please specify the model name supported by PaddleClas or directory contained model files(inference.pdmodel, inference.pdiparams)." + raise InputModelError(err) + return + + def predict(self, input_data: Union[str, np.array], + print_pred: bool=False) -> Generator[list, None, None]: + """Predict input_data. + + Args: + input_data (Union[str, np.array]): + When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet. + When the type is np.array, it is the image data whose channel order is RGB. + print_pred (bool, optional): Whether print the prediction result. Defaults to False. + + Raises: + ImageTypeError: Illegal input_data. + + Yields: + Generator[list, None, None]: + The prediction result(s) of input_data by batch_size. For every one image, + prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names". + The format of batch prediction result(s) is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...] + """ + + if isinstance(input_data, np.ndarray): + yield self.cls_predictor.predict(input_data) + elif isinstance(input_data, str): + if input_data.startswith("http") or input_data.startswith("https"): + image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR) + if not os.path.exists(image_storage_dir()): + os.makedirs(image_storage_dir()) + image_save_path = image_storage_dir("tmp.jpg") + download_with_progressbar(input_data, image_save_path) + input_data = image_save_path + warnings.warn( + f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}" + ) + image_list = get_image_list(input_data) + + batch_size = self._config.Global.get("batch_size", 1) + topk = self._config.PostProcess.Topk.get('topk', 1) + + img_list = [] + img_path_list = [] + cnt = 0 + for idx, img_path in enumerate(image_list): + img = cv2.imread(img_path) + if img is None: + warnings.warn( + f"Image file failed to read and has been skipped. The path: {img_path}" + ) + continue + img = img[:, :, ::-1] + img_list.append(img) + img_path_list.append(img_path) + cnt += 1 + + if cnt % batch_size == 0 or (idx + 1) == len(image_list): + preds = self.cls_predictor.predict(img_list) + + if print_pred and preds: + for idx, pred in enumerate(preds): + pred_str = ", ".join( + [f"{k}: {pred[k]}" for k in pred]) + print( + f"filename: {img_path_list[idx]}, top-{topk}, {pred_str}" + ) + + img_list = [] + img_path_list = [] + yield preds + else: + err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL" + raise ImageTypeError(err) + return + + +# for CLI +def main(): + """Function API used for commad line. + """ + cfg = args_cfg() + clas_engine = PaddleClas(**cfg) + res = clas_engine.predict(cfg["infer_imgs"], print_pred=True) + for _ in res: + pass + print("Predict complete!") + return + + +if __name__ == "__main__": + main() diff --git a/src/PaddleClas/requirements.txt b/src/PaddleClas/requirements.txt new file mode 100644 index 0000000..79f548c --- /dev/null +++ b/src/PaddleClas/requirements.txt @@ -0,0 +1,11 @@ +prettytable +ujson +opencv-python==4.4.0.46 +pillow +tqdm +PyYAML +visualdl >= 2.2.0 +scipy +scikit-learn==0.23.2 +gast==0.3.3 +faiss-cpu==1.7.1.post2 diff --git a/src/PaddleClas/setup.py b/src/PaddleClas/setup.py new file mode 100644 index 0000000..57045d3 --- /dev/null +++ b/src/PaddleClas/setup.py @@ -0,0 +1,60 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from io import open +from setuptools import setup + +with open('requirements.txt', encoding="utf-8-sig") as f: + requirements = f.readlines() + + +def readme(): + with open( + 'docs/en/inference_deployment/whl_deploy_en.md', + encoding="utf-8-sig") as f: + README = f.read() + return README + + +setup( + name='paddleclas', + packages=['paddleclas'], + package_dir={'paddleclas': ''}, + include_package_data=True, + entry_points={ + "console_scripts": ["paddleclas= paddleclas.paddleclas:main"] + }, + version='0.0.0', + install_requires=requirements, + license='Apache License 2.0', + description='Awesome Image Classification toolkits based on PaddlePaddle ', + long_description=readme(), + long_description_content_type='text/markdown', + url='https://github.com/PaddlePaddle/PaddleClas', + download_url='https://github.com/PaddlePaddle/PaddleClas.git', + keywords=[ + 'A treasure chest for image classification powered by PaddlePaddle.' + ], + classifiers=[ + 'Intended Audience :: Developers', + 'Operating System :: OS Independent', + 'Natural Language :: Chinese (Simplified)', + 'Programming Language :: Python :: 3', + 'Programming Language :: Python :: 3.2', + 'Programming Language :: Python :: 3.3', + 'Programming Language :: Python :: 3.4', + 'Programming Language :: Python :: 3.5', + 'Programming Language :: Python :: 3.6', + 'Programming Language :: Python :: 3.7', 'Topic :: Utilities' + ], ) diff --git a/src/Search_2D/.idea/.gitignore b/src/Search_2D/.idea/.gitignore deleted file mode 100644 index 359bb53..0000000 --- a/src/Search_2D/.idea/.gitignore +++ /dev/null @@ -1,3 +0,0 @@ -# 默认忽略的文件 -/shelf/ -/workspace.xml diff --git a/src/Search_2D/.idea/Search_2D.iml b/src/Search_2D/.idea/Search_2D.iml deleted file mode 100644 index 8b8c395..0000000 --- a/src/Search_2D/.idea/Search_2D.iml +++ /dev/null @@ -1,12 +0,0 @@ - - - - - - - - - - \ No newline at end of file diff --git a/src/Search_2D/.idea/inspectionProfiles/Project_Default.xml b/src/Search_2D/.idea/inspectionProfiles/Project_Default.xml deleted file mode 100644 index 6736707..0000000 --- a/src/Search_2D/.idea/inspectionProfiles/Project_Default.xml +++ /dev/null @@ -1,15 +0,0 @@ - - - - \ No newline at end of file diff --git a/src/Search_2D/.idea/inspectionProfiles/profiles_settings.xml b/src/Search_2D/.idea/inspectionProfiles/profiles_settings.xml deleted file mode 100644 index 105ce2d..0000000 --- a/src/Search_2D/.idea/inspectionProfiles/profiles_settings.xml +++ /dev/null @@ -1,6 +0,0 @@ - - - - \ No newline at end of file diff --git a/src/Search_2D/.idea/misc.xml b/src/Search_2D/.idea/misc.xml deleted file mode 100644 index d56657a..0000000 --- a/src/Search_2D/.idea/misc.xml +++ /dev/null @@ -1,4 +0,0 @@ - - - - \ No newline at end of file diff --git a/src/Search_2D/.idea/modules.xml b/src/Search_2D/.idea/modules.xml deleted file mode 100644 index 01049a7..0000000 --- a/src/Search_2D/.idea/modules.xml +++ /dev/null @@ -1,8 +0,0 @@ - - - - - - - - \ No newline at end of file diff --git a/src/Search_2D/ARAstar.py b/src/Search_2D/ARAstar.py deleted file mode 100644 index c014616..0000000 --- a/src/Search_2D/ARAstar.py +++ /dev/null @@ -1,222 +0,0 @@ -""" -ARA_star 2D (Anytime Repairing A*) -@author: huiming zhou - -@description: local inconsistency: g-value decreased. -g(s) decreased introduces a local inconsistency between s and its successors. - -""" - -import os -import sys -import math - -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../../Search_based_Planning/") - -from Search_2D import plotting, env - - -class AraStar: - def __init__(self, s_start, s_goal, e, heuristic_type): - self.s_start, self.s_goal = s_start, s_goal - self.heuristic_type = heuristic_type - - self.Env = env.Env() # class Env - - self.u_set = self.Env.motions # feasible input set - self.obs = self.Env.obs # position of obstacles - self.e = e # weight - - self.g = dict() # Cost to come - self.OPEN = dict() # priority queue / OPEN set - self.CLOSED = set() # CLOSED set - self.INCONS = {} # INCONSISTENT set - self.PARENT = dict() # relations - self.path = [] # planning path - self.visited = [] # order of visited nodes - - def init(self): - """ - initialize each set. - """ - - self.g[self.s_start] = 0.0 - self.g[self.s_goal] = math.inf - self.OPEN[self.s_start] = self.f_value(self.s_start) - self.PARENT[self.s_start] = self.s_start - - def searching(self): - self.init() - self.ImprovePath() - self.path.append(self.extract_path()) - - while self.update_e() > 1: # continue condition - self.e -= 0.4 # increase weight - self.OPEN.update(self.INCONS) - self.OPEN = {s: self.f_value(s) for s in self.OPEN} # update f_value of OPEN set - - self.INCONS = dict() - self.CLOSED = set() - self.ImprovePath() # improve path - self.path.append(self.extract_path()) - - return self.path, self.visited - - def ImprovePath(self): - """ - :return: a e'-suboptimal path - """ - - visited_each = [] - - while True: - s, f_small = self.calc_smallest_f() - - if self.f_value(self.s_goal) <= f_small: - break - - self.OPEN.pop(s) - self.CLOSED.add(s) - - for s_n in self.get_neighbor(s): - if s_n in self.obs: - continue - - new_cost = self.g[s] + self.cost(s, s_n) - - if s_n not in self.g or new_cost < self.g[s_n]: - self.g[s_n] = new_cost - self.PARENT[s_n] = s - visited_each.append(s_n) - - if s_n not in self.CLOSED: - self.OPEN[s_n] = self.f_value(s_n) - else: - self.INCONS[s_n] = 0.0 - - self.visited.append(visited_each) - - def calc_smallest_f(self): - """ - :return: node with smallest f_value in OPEN set. - """ - - s_small = min(self.OPEN, key=self.OPEN.get) - - return s_small, self.OPEN[s_small] - - def get_neighbor(self, s): - """ - find neighbors of state s that not in obstacles. - :param s: state - :return: neighbors - """ - - return {(s[0] + u[0], s[1] + u[1]) for u in self.u_set} - - def update_e(self): - v = float("inf") - - if self.OPEN: - v = min(self.g[s] + self.h(s) for s in self.OPEN) - if self.INCONS: - v = min(v, min(self.g[s] + self.h(s) for s in self.INCONS)) - - return min(self.e, self.g[self.s_goal] / v) - - def f_value(self, x): - """ - f = g + e * h - f = cost-to-come + weight * cost-to-go - :param x: current state - :return: f_value - """ - - return self.g[x] + self.e * self.h(x) - - def extract_path(self): - """ - Extract the path based on the PARENT set. - :return: The planning path - """ - - path = [self.s_goal] - s = self.s_goal - - while True: - s = self.PARENT[s] - path.append(s) - - if s == self.s_start: - break - - return list(path) - - def h(self, s): - """ - Calculate heuristic. - :param s: current node (state) - :return: heuristic function value - """ - - heuristic_type = self.heuristic_type # heuristic type - goal = self.s_goal # goal node - - if heuristic_type == "manhattan": - return abs(goal[0] - s[0]) + abs(goal[1] - s[1]) - else: - return math.hypot(goal[0] - s[0], goal[1] - s[1]) - - def cost(self, s_start, s_goal): - """ - Calculate Cost for this motion - :param s_start: starting node - :param s_goal: end node - :return: Cost for this motion - :note: Cost function could be more complicate! - """ - - if self.is_collision(s_start, s_goal): - return math.inf - - return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1]) - - def is_collision(self, s_start, s_end): - """ - check if the line segment (s_start, s_end) is collision. - :param s_start: start node - :param s_end: end node - :return: True: is collision / False: not collision - """ - - if s_start in self.obs or s_end in self.obs: - return True - - if s_start[0] != s_end[0] and s_start[1] != s_end[1]: - if s_end[0] - s_start[0] == s_start[1] - s_end[1]: - s1 = (min(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - else: - s1 = (min(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - - if s1 in self.obs or s2 in self.obs: - return True - - return False - - -def main(): - s_start = (5, 5) - s_goal = (45, 25) - - arastar = AraStar(s_start, s_goal, 2.5, "euclidean") - plot = plotting.Plotting(s_start, s_goal) - - path, visited = arastar.searching() - plot.animation_ara_star(path, visited, "Anytime Repairing A* (ARA*)") - - -if __name__ == '__main__': - main() diff --git a/src/Search_2D/Anytime_D_star.py b/src/Search_2D/Anytime_D_star.py deleted file mode 100644 index cd1d62b..0000000 --- a/src/Search_2D/Anytime_D_star.py +++ /dev/null @@ -1,317 +0,0 @@ -""" -Anytime_D_star 2D -@author: huiming zhou -""" - -import os -import sys -import math -import matplotlib.pyplot as plt - -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../../Search_based_Planning/") - -from Search_2D import plotting -from Search_2D import env - - -class ADStar: - def __init__(self, s_start, s_goal, eps, heuristic_type): - self.s_start, self.s_goal = s_start, s_goal - self.heuristic_type = heuristic_type - - self.Env = env.Env() # class Env - self.Plot = plotting.Plotting(s_start, s_goal) - - self.u_set = self.Env.motions # feasible input set - self.obs = self.Env.obs # position of obstacles - self.x = self.Env.x_range - self.y = self.Env.y_range - - self.g, self.rhs, self.OPEN = {}, {}, {} - - for i in range(1, self.Env.x_range - 1): - for j in range(1, self.Env.y_range - 1): - self.rhs[(i, j)] = float("inf") - self.g[(i, j)] = float("inf") - - self.rhs[self.s_goal] = 0.0 - self.eps = eps - self.OPEN[self.s_goal] = self.Key(self.s_goal) - self.CLOSED, self.INCONS = set(), dict() - - self.visited = set() - self.count = 0 - self.count_env_change = 0 - self.obs_add = set() - self.obs_remove = set() - self.title = "Anytime D*: Small changes" # Significant changes - self.fig = plt.figure() - - def run(self): - self.Plot.plot_grid(self.title) - self.ComputeOrImprovePath() - self.plot_visited() - self.plot_path(self.extract_path()) - self.visited = set() - - while True: - if self.eps <= 1.0: - break - self.eps -= 0.5 - self.OPEN.update(self.INCONS) - for s in self.OPEN: - self.OPEN[s] = self.Key(s) - self.CLOSED = set() - self.ComputeOrImprovePath() - self.plot_visited() - self.plot_path(self.extract_path()) - self.visited = set() - plt.pause(0.5) - - self.fig.canvas.mpl_connect('button_press_event', self.on_press) - plt.show() - - def on_press(self, event): - x, y = event.xdata, event.ydata - if x < 0 or x > self.x - 1 or y < 0 or y > self.y - 1: - print("Please choose right area!") - else: - self.count_env_change += 1 - x, y = int(x), int(y) - print("Change position: s =", x, ",", "y =", y) - - # for small changes - if self.title == "Anytime D*: Small changes": - if (x, y) not in self.obs: - self.obs.add((x, y)) - self.g[(x, y)] = float("inf") - self.rhs[(x, y)] = float("inf") - else: - self.obs.remove((x, y)) - self.UpdateState((x, y)) - - self.Plot.update_obs(self.obs) - - for sn in self.get_neighbor((x, y)): - self.UpdateState(sn) - - plt.cla() - self.Plot.plot_grid(self.title) - - while True: - if len(self.INCONS) == 0: - break - self.OPEN.update(self.INCONS) - for s in self.OPEN: - self.OPEN[s] = self.Key(s) - self.CLOSED = set() - self.ComputeOrImprovePath() - self.plot_visited() - self.plot_path(self.extract_path()) - # plt.plot(self.title) - self.visited = set() - - if self.eps <= 1.0: - break - - else: - if (x, y) not in self.obs: - self.obs.add((x, y)) - self.obs_add.add((x, y)) - plt.plot(x, y, 'sk') - if (x, y) in self.obs_remove: - self.obs_remove.remove((x, y)) - else: - self.obs.remove((x, y)) - self.obs_remove.add((x, y)) - plt.plot(x, y, marker='s', color='white') - if (x, y) in self.obs_add: - self.obs_add.remove((x, y)) - - self.Plot.update_obs(self.obs) - - if self.count_env_change >= 15: - self.count_env_change = 0 - self.eps += 2.0 - for s in self.obs_add: - self.g[(x, y)] = float("inf") - self.rhs[(x, y)] = float("inf") - - for sn in self.get_neighbor(s): - self.UpdateState(sn) - - for s in self.obs_remove: - for sn in self.get_neighbor(s): - self.UpdateState(sn) - self.UpdateState(s) - - plt.cla() - self.Plot.plot_grid(self.title) - - while True: - if self.eps <= 1.0: - break - self.eps -= 0.5 - self.OPEN.update(self.INCONS) - for s in self.OPEN: - self.OPEN[s] = self.Key(s) - self.CLOSED = set() - self.ComputeOrImprovePath() - self.plot_visited() - self.plot_path(self.extract_path()) - plt.title(self.title) - self.visited = set() - plt.pause(0.5) - - self.fig.canvas.draw_idle() - - def ComputeOrImprovePath(self): - while True: - s, v = self.TopKey() - if v >= self.Key(self.s_start) and \ - self.rhs[self.s_start] == self.g[self.s_start]: - break - - self.OPEN.pop(s) - self.visited.add(s) - - if self.g[s] > self.rhs[s]: - self.g[s] = self.rhs[s] - self.CLOSED.add(s) - for sn in self.get_neighbor(s): - self.UpdateState(sn) - else: - self.g[s] = float("inf") - for sn in self.get_neighbor(s): - self.UpdateState(sn) - self.UpdateState(s) - - def UpdateState(self, s): - if s != self.s_goal: - self.rhs[s] = float("inf") - for x in self.get_neighbor(s): - self.rhs[s] = min(self.rhs[s], self.g[x] + self.cost(s, x)) - if s in self.OPEN: - self.OPEN.pop(s) - - if self.g[s] != self.rhs[s]: - if s not in self.CLOSED: - self.OPEN[s] = self.Key(s) - else: - self.INCONS[s] = 0 - - def Key(self, s): - if self.g[s] > self.rhs[s]: - return [self.rhs[s] + self.eps * self.h(self.s_start, s), self.rhs[s]] - else: - return [self.g[s] + self.h(self.s_start, s), self.g[s]] - - def TopKey(self): - """ - :return: return the min key and its value. - """ - - s = min(self.OPEN, key=self.OPEN.get) - return s, self.OPEN[s] - - def h(self, s_start, s_goal): - heuristic_type = self.heuristic_type # heuristic type - - if heuristic_type == "manhattan": - return abs(s_goal[0] - s_start[0]) + abs(s_goal[1] - s_start[1]) - else: - return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1]) - - def cost(self, s_start, s_goal): - """ - Calculate Cost for this motion - :param s_start: starting node - :param s_goal: end node - :return: Cost for this motion - :note: Cost function could be more complicate! - """ - - if self.is_collision(s_start, s_goal): - return float("inf") - - return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1]) - - def is_collision(self, s_start, s_end): - if s_start in self.obs or s_end in self.obs: - return True - - if s_start[0] != s_end[0] and s_start[1] != s_end[1]: - if s_end[0] - s_start[0] == s_start[1] - s_end[1]: - s1 = (min(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - else: - s1 = (min(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - - if s1 in self.obs or s2 in self.obs: - return True - - return False - - def get_neighbor(self, s): - nei_list = set() - for u in self.u_set: - s_next = tuple([s[i] + u[i] for i in range(2)]) - if s_next not in self.obs: - nei_list.add(s_next) - - return nei_list - - def extract_path(self): - """ - Extract the path based on the PARENT set. - :return: The planning path - """ - - path = [self.s_start] - s = self.s_start - - for k in range(100): - g_list = {} - for x in self.get_neighbor(s): - if not self.is_collision(s, x): - g_list[x] = self.g[x] - s = min(g_list, key=g_list.get) - path.append(s) - if s == self.s_goal: - break - - return list(path) - - def plot_path(self, path): - px = [x[0] for x in path] - py = [x[1] for x in path] - plt.plot(px, py, linewidth=2) - plt.plot(self.s_start[0], self.s_start[1], "bs") - plt.plot(self.s_goal[0], self.s_goal[1], "gs") - - def plot_visited(self): - self.count += 1 - - color = ['gainsboro', 'lightgray', 'silver', 'darkgray', - 'bisque', 'navajowhite', 'moccasin', 'wheat', - 'powderblue', 'skyblue', 'lightskyblue', 'cornflowerblue'] - - if self.count >= len(color) - 1: - self.count = 0 - - for x in self.visited: - plt.plot(x[0], x[1], marker='s', color=color[self.count]) - - -def main(): - s_start = (5, 5) - s_goal = (45, 25) - - dstar = ADStar(s_start, s_goal, 2.5, "euclidean") - dstar.run() - - -if __name__ == '__main__': - main() diff --git a/src/Search_2D/Astar.py b/src/Search_2D/Astar.py deleted file mode 100644 index adf676b..0000000 --- a/src/Search_2D/Astar.py +++ /dev/null @@ -1,225 +0,0 @@ -""" -A_star 2D -@author: huiming zhou -""" - -import os -import sys -import math -import heapq - -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../../Search_based_Planning/") - -from Search_2D import plotting, env - - -class AStar: - """AStar set the cost + heuristics as the priority - """ - def __init__(self, s_start, s_goal, heuristic_type): - self.s_start = s_start - self.s_goal = s_goal - self.heuristic_type = heuristic_type - - self.Env = env.Env() # class Env - - self.u_set = self.Env.motions # feasible input set - self.obs = self.Env.obs # position of obstacles - - self.OPEN = [] # priority queue / OPEN set - self.CLOSED = [] # CLOSED set / VISITED order - self.PARENT = dict() # recorded parent - self.g = dict() # cost to come - - def searching(self): - """ - A_star Searching. - :return: path, visited order - """ - - self.PARENT[self.s_start] = self.s_start - self.g[self.s_start] = 0 - self.g[self.s_goal] = math.inf - heapq.heappush(self.OPEN, - (self.f_value(self.s_start), self.s_start)) - - while self.OPEN: - _, s = heapq.heappop(self.OPEN) - self.CLOSED.append(s) - - if s == self.s_goal: # stop condition - break - - for s_n in self.get_neighbor(s): - new_cost = self.g[s] + self.cost(s, s_n) - - if s_n not in self.g: - self.g[s_n] = math.inf - - if new_cost < self.g[s_n]: # conditions for updating Cost - self.g[s_n] = new_cost - self.PARENT[s_n] = s - heapq.heappush(self.OPEN, (self.f_value(s_n), s_n)) - - return self.extract_path(self.PARENT), self.CLOSED - - def searching_repeated_astar(self, e): - """ - repeated A*. - :param e: weight of A* - :return: path and visited order - """ - - path, visited = [], [] - - while e >= 1: - p_k, v_k = self.repeated_searching(self.s_start, self.s_goal, e) - path.append(p_k) - visited.append(v_k) - e -= 0.5 - - return path, visited - - def repeated_searching(self, s_start, s_goal, e): - """ - run A* with weight e. - :param s_start: starting state - :param s_goal: goal state - :param e: weight of a* - :return: path and visited order. - """ - - g = {s_start: 0, s_goal: float("inf")} - PARENT = {s_start: s_start} - OPEN = [] - CLOSED = [] - heapq.heappush(OPEN, - (g[s_start] + e * self.heuristic(s_start), s_start)) - - while OPEN: - _, s = heapq.heappop(OPEN) - CLOSED.append(s) - - if s == s_goal: - break - - for s_n in self.get_neighbor(s): - new_cost = g[s] + self.cost(s, s_n) - - if s_n not in g: - g[s_n] = math.inf - - if new_cost < g[s_n]: # conditions for updating Cost - g[s_n] = new_cost - PARENT[s_n] = s - heapq.heappush(OPEN, (g[s_n] + e * self.heuristic(s_n), s_n)) - - return self.extract_path(PARENT), CLOSED - - def get_neighbor(self, s): - """ - find neighbors of state s that not in obstacles. - :param s: state - :return: neighbors - """ - - return [(s[0] + u[0], s[1] + u[1]) for u in self.u_set] - - def cost(self, s_start, s_goal): - """ - Calculate Cost for this motion - :param s_start: starting node - :param s_goal: end node - :return: Cost for this motion - :note: Cost function could be more complicate! - """ - - if self.is_collision(s_start, s_goal): - return math.inf - - return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1]) - - def is_collision(self, s_start, s_end): - """ - check if the line segment (s_start, s_end) is collision. - :param s_start: start node - :param s_end: end node - :return: True: is collision / False: not collision - """ - - if s_start in self.obs or s_end in self.obs: - return True - - if s_start[0] != s_end[0] and s_start[1] != s_end[1]: - if s_end[0] - s_start[0] == s_start[1] - s_end[1]: - s1 = (min(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - else: - s1 = (min(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - - if s1 in self.obs or s2 in self.obs: - return True - - return False - - def f_value(self, s): - """ - f = g + h. (g: Cost to come, h: heuristic value) - :param s: current state - :return: f - """ - - return self.g[s] + self.heuristic(s) - - def extract_path(self, PARENT): - """ - Extract the path based on the PARENT set. - :return: The planning path - """ - - path = [self.s_goal] - s = self.s_goal - - while True: - s = PARENT[s] - path.append(s) - - if s == self.s_start: - break - - return list(path) - - def heuristic(self, s): - """ - Calculate heuristic. - :param s: current node (state) - :return: heuristic function value - """ - - heuristic_type = self.heuristic_type # heuristic type - goal = self.s_goal # goal node - - if heuristic_type == "manhattan": - return abs(goal[0] - s[0]) + abs(goal[1] - s[1]) - else: - return math.hypot(goal[0] - s[0], goal[1] - s[1]) - - -def main(): - s_start = (5, 5) - s_goal = (45, 25) - - astar = AStar(s_start, s_goal, "euclidean") - plot = plotting.Plotting(s_start, s_goal) - - path, visited = astar.searching() - plot.animation(path, visited, "A*") # animation - - # path, visited = astar.searching_repeated_astar(2.5) # initial weight e = 2.5 - # plot.animation_ara_star(path, visited, "Repeated A*") - - -if __name__ == '__main__': - main() diff --git a/src/Search_2D/Best_First.py b/src/Search_2D/Best_First.py deleted file mode 100644 index 0c85fba..0000000 --- a/src/Search_2D/Best_First.py +++ /dev/null @@ -1,68 +0,0 @@ -""" -Best-First Searching -@author: huiming zhou -""" - -import os -import sys -import math -import heapq - -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../../Search_based_Planning/") - -from Search_2D import plotting, env -from Search_2D.Astar import AStar - - -class BestFirst(AStar): - """BestFirst set the heuristics as the priority - """ - def searching(self): - """ - Breadth-first Searching. - :return: path, visited order - """ - - self.PARENT[self.s_start] = self.s_start - self.g[self.s_start] = 0 - self.g[self.s_goal] = math.inf - heapq.heappush(self.OPEN, - (self.heuristic(self.s_start), self.s_start)) - - while self.OPEN: - _, s = heapq.heappop(self.OPEN) - self.CLOSED.append(s) - - if s == self.s_goal: - break - - for s_n in self.get_neighbor(s): - new_cost = self.g[s] + self.cost(s, s_n) - - if s_n not in self.g: - self.g[s_n] = math.inf - - if new_cost < self.g[s_n]: # conditions for updating Cost - self.g[s_n] = new_cost - self.PARENT[s_n] = s - - # best first set the heuristics as the priority - heapq.heappush(self.OPEN, (self.heuristic(s_n), s_n)) - - return self.extract_path(self.PARENT), self.CLOSED - - -def main(): - s_start = (5, 5) - s_goal = (45, 25) - - BF = BestFirst(s_start, s_goal, 'euclidean') - plot = plotting.Plotting(s_start, s_goal) - - path, visited = BF.searching() - plot.animation(path, visited, "Best-first Searching") # animation - - -if __name__ == '__main__': - main() diff --git a/src/Search_2D/Bidirectional_a_star.py b/src/Search_2D/Bidirectional_a_star.py deleted file mode 100644 index 3580c1a..0000000 --- a/src/Search_2D/Bidirectional_a_star.py +++ /dev/null @@ -1,229 +0,0 @@ -""" -Bidirectional_a_star 2D -@author: huiming zhou -""" - -import os -import sys -import math -import heapq - -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../../Search_based_Planning/") - -from Search_2D import plotting, env - - -class BidirectionalAStar: - def __init__(self, s_start, s_goal, heuristic_type): - self.s_start = s_start - self.s_goal = s_goal - self.heuristic_type = heuristic_type - - self.Env = env.Env() # class Env - - self.u_set = self.Env.motions # feasible input set - self.obs = self.Env.obs # position of obstacles - - self.OPEN_fore = [] # OPEN set for forward searching - self.OPEN_back = [] # OPEN set for backward searching - self.CLOSED_fore = [] # CLOSED set for forward - self.CLOSED_back = [] # CLOSED set for backward - self.PARENT_fore = dict() # recorded parent for forward - self.PARENT_back = dict() # recorded parent for backward - self.g_fore = dict() # cost to come for forward - self.g_back = dict() # cost to come for backward - - def init(self): - """ - initialize parameters - """ - - self.g_fore[self.s_start] = 0.0 - self.g_fore[self.s_goal] = math.inf - self.g_back[self.s_goal] = 0.0 - self.g_back[self.s_start] = math.inf - self.PARENT_fore[self.s_start] = self.s_start - self.PARENT_back[self.s_goal] = self.s_goal - heapq.heappush(self.OPEN_fore, - (self.f_value_fore(self.s_start), self.s_start)) - heapq.heappush(self.OPEN_back, - (self.f_value_back(self.s_goal), self.s_goal)) - - def searching(self): - """ - Bidirectional A* - :return: connected path, visited order of forward, visited order of backward - """ - - self.init() - s_meet = self.s_start - - while self.OPEN_fore and self.OPEN_back: - # solve foreward-search - _, s_fore = heapq.heappop(self.OPEN_fore) - - if s_fore in self.PARENT_back: - s_meet = s_fore - break - - self.CLOSED_fore.append(s_fore) - - for s_n in self.get_neighbor(s_fore): - new_cost = self.g_fore[s_fore] + self.cost(s_fore, s_n) - - if s_n not in self.g_fore: - self.g_fore[s_n] = math.inf - - if new_cost < self.g_fore[s_n]: - self.g_fore[s_n] = new_cost - self.PARENT_fore[s_n] = s_fore - heapq.heappush(self.OPEN_fore, - (self.f_value_fore(s_n), s_n)) - - # solve backward-search - _, s_back = heapq.heappop(self.OPEN_back) - - if s_back in self.PARENT_fore: - s_meet = s_back - break - - self.CLOSED_back.append(s_back) - - for s_n in self.get_neighbor(s_back): - new_cost = self.g_back[s_back] + self.cost(s_back, s_n) - - if s_n not in self.g_back: - self.g_back[s_n] = math.inf - - if new_cost < self.g_back[s_n]: - self.g_back[s_n] = new_cost - self.PARENT_back[s_n] = s_back - heapq.heappush(self.OPEN_back, - (self.f_value_back(s_n), s_n)) - - return self.extract_path(s_meet), self.CLOSED_fore, self.CLOSED_back - - def get_neighbor(self, s): - """ - find neighbors of state s that not in obstacles. - :param s: state - :return: neighbors - """ - - return [(s[0] + u[0], s[1] + u[1]) for u in self.u_set] - - def extract_path(self, s_meet): - """ - extract path from start and goal - :param s_meet: meet point of bi-direction a* - :return: path - """ - - # extract path for foreward part - path_fore = [s_meet] - s = s_meet - - while True: - s = self.PARENT_fore[s] - path_fore.append(s) - if s == self.s_start: - break - - # extract path for backward part - path_back = [] - s = s_meet - - while True: - s = self.PARENT_back[s] - path_back.append(s) - if s == self.s_goal: - break - - return list(reversed(path_fore)) + list(path_back) - - def f_value_fore(self, s): - """ - forward searching: f = g + h. (g: Cost to come, h: heuristic value) - :param s: current state - :return: f - """ - - return self.g_fore[s] + self.h(s, self.s_goal) - - def f_value_back(self, s): - """ - backward searching: f = g + h. (g: Cost to come, h: heuristic value) - :param s: current state - :return: f - """ - - return self.g_back[s] + self.h(s, self.s_start) - - def h(self, s, goal): - """ - Calculate heuristic value. - :param s: current node (state) - :param goal: goal node (state) - :return: heuristic value - """ - - heuristic_type = self.heuristic_type - - if heuristic_type == "manhattan": - return abs(goal[0] - s[0]) + abs(goal[1] - s[1]) - else: - return math.hypot(goal[0] - s[0], goal[1] - s[1]) - - def cost(self, s_start, s_goal): - """ - Calculate Cost for this motion - :param s_start: starting node - :param s_goal: end node - :return: Cost for this motion - :note: Cost function could be more complicate! - """ - - if self.is_collision(s_start, s_goal): - return math.inf - - return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1]) - - def is_collision(self, s_start, s_end): - """ - check if the line segment (s_start, s_end) is collision. - :param s_start: start node - :param s_end: end node - :return: True: is collision / False: not collision - """ - - if s_start in self.obs or s_end in self.obs: - return True - - if s_start[0] != s_end[0] and s_start[1] != s_end[1]: - if s_end[0] - s_start[0] == s_start[1] - s_end[1]: - s1 = (min(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - else: - s1 = (min(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - - if s1 in self.obs or s2 in self.obs: - return True - - return False - - -def main(): - x_start = (5, 5) - x_goal = (45, 25) - - bastar = BidirectionalAStar(x_start, x_goal, "euclidean") - plot = plotting.Plotting(x_start, x_goal) - - path, visited_fore, visited_back = bastar.searching() - plot.animation_bi_astar(path, visited_fore, visited_back, "Bidirectional-A*") # animation - - -if __name__ == '__main__': - main() diff --git a/src/Search_2D/D_star.py b/src/Search_2D/D_star.py deleted file mode 100644 index 60b6c7e..0000000 --- a/src/Search_2D/D_star.py +++ /dev/null @@ -1,304 +0,0 @@ -""" -D_star 2D -@author: huiming zhou -""" - -import os -import sys -import math -import matplotlib.pyplot as plt - -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../../Search_based_Planning/") - -from Search_2D import plotting, env - - -class DStar: - def __init__(self, s_start, s_goal): - self.s_start, self.s_goal = s_start, s_goal - - self.Env = env.Env() - self.Plot = plotting.Plotting(self.s_start, self.s_goal) - - self.u_set = self.Env.motions - self.obs = self.Env.obs - self.x = self.Env.x_range - self.y = self.Env.y_range - - self.fig = plt.figure() - - self.OPEN = set() - self.t = dict() - self.PARENT = dict() - self.h = dict() - self.k = dict() - self.path = [] - self.visited = set() - self.count = 0 - - def init(self): - for i in range(self.Env.x_range): - for j in range(self.Env.y_range): - self.t[(i, j)] = 'NEW' - self.k[(i, j)] = 0.0 - self.h[(i, j)] = float("inf") - self.PARENT[(i, j)] = None - - self.h[self.s_goal] = 0.0 - - def run(self, s_start, s_end): - self.init() - self.insert(s_end, 0) - - while True: - self.process_state() - if self.t[s_start] == 'CLOSED': - break - - self.path = self.extract_path(s_start, s_end) - self.Plot.plot_grid("Dynamic A* (D*)") - self.plot_path(self.path) - self.fig.canvas.mpl_connect('button_press_event', self.on_press) - plt.show() - - def on_press(self, event): - x, y = event.xdata, event.ydata - if x < 0 or x > self.x - 1 or y < 0 or y > self.y - 1: - print("Please choose right area!") - else: - x, y = int(x), int(y) - if (x, y) not in self.obs: - print("Add obstacle at: s =", x, ",", "y =", y) - self.obs.add((x, y)) - self.Plot.update_obs(self.obs) - - s = self.s_start - self.visited = set() - self.count += 1 - - while s != self.s_goal: - if self.is_collision(s, self.PARENT[s]): - self.modify(s) - continue - s = self.PARENT[s] - - self.path = self.extract_path(self.s_start, self.s_goal) - - plt.cla() - self.Plot.plot_grid("Dynamic A* (D*)") - self.plot_visited(self.visited) - self.plot_path(self.path) - - self.fig.canvas.draw_idle() - - def extract_path(self, s_start, s_end): - path = [s_start] - s = s_start - while True: - s = self.PARENT[s] - path.append(s) - if s == s_end: - return path - - def process_state(self): - s = self.min_state() # get node in OPEN set with min k value - self.visited.add(s) - - if s is None: - return -1 # OPEN set is empty - - k_old = self.get_k_min() # record the min k value of this iteration (min path cost) - self.delete(s) # move state s from OPEN set to CLOSED set - - # k_min < h[s] --> s: RAISE state (increased cost) - if k_old < self.h[s]: - for s_n in self.get_neighbor(s): - if self.h[s_n] <= k_old and \ - self.h[s] > self.h[s_n] + self.cost(s_n, s): - - # update h_value and choose parent - self.PARENT[s] = s_n - self.h[s] = self.h[s_n] + self.cost(s_n, s) - - # s: k_min >= h[s] -- > s: LOWER state (cost reductions) - if k_old == self.h[s]: - for s_n in self.get_neighbor(s): - if self.t[s_n] == 'NEW' or \ - (self.PARENT[s_n] == s and self.h[s_n] != self.h[s] + self.cost(s, s_n)) or \ - (self.PARENT[s_n] != s and self.h[s_n] > self.h[s] + self.cost(s, s_n)): - - # Condition: - # 1) t[s_n] == 'NEW': not visited - # 2) s_n's parent: cost reduction - # 3) s_n find a better parent - self.PARENT[s_n] = s - self.insert(s_n, self.h[s] + self.cost(s, s_n)) - else: - for s_n in self.get_neighbor(s): - if self.t[s_n] == 'NEW' or \ - (self.PARENT[s_n] == s and self.h[s_n] != self.h[s] + self.cost(s, s_n)): - - # Condition: - # 1) t[s_n] == 'NEW': not visited - # 2) s_n's parent: cost reduction - self.PARENT[s_n] = s - self.insert(s_n, self.h[s] + self.cost(s, s_n)) - else: - if self.PARENT[s_n] != s and \ - self.h[s_n] > self.h[s] + self.cost(s, s_n): - - # Condition: LOWER happened in OPEN set (s), s should be explored again - self.insert(s, self.h[s]) - else: - if self.PARENT[s_n] != s and \ - self.h[s] > self.h[s_n] + self.cost(s_n, s) and \ - self.t[s_n] == 'CLOSED' and \ - self.h[s_n] > k_old: - - # Condition: LOWER happened in CLOSED set (s_n), s_n should be explored again - self.insert(s_n, self.h[s_n]) - - return self.get_k_min() - - def min_state(self): - """ - choose the node with the minimum k value in OPEN set. - :return: state - """ - - if not self.OPEN: - return None - - return min(self.OPEN, key=lambda x: self.k[x]) - - def get_k_min(self): - """ - calc the min k value for nodes in OPEN set. - :return: k value - """ - - if not self.OPEN: - return -1 - - return min([self.k[x] for x in self.OPEN]) - - def insert(self, s, h_new): - """ - insert node into OPEN set. - :param s: node - :param h_new: new or better cost to come value - """ - - if self.t[s] == 'NEW': - self.k[s] = h_new - elif self.t[s] == 'OPEN': - self.k[s] = min(self.k[s], h_new) - elif self.t[s] == 'CLOSED': - self.k[s] = min(self.h[s], h_new) - - self.h[s] = h_new - self.t[s] = 'OPEN' - self.OPEN.add(s) - - def delete(self, s): - """ - delete: move state s from OPEN set to CLOSED set. - :param s: state should be deleted - """ - - if self.t[s] == 'OPEN': - self.t[s] = 'CLOSED' - - self.OPEN.remove(s) - - def modify(self, s): - """ - start processing from state s. - :param s: is a node whose status is RAISE or LOWER. - """ - - self.modify_cost(s) - - while True: - k_min = self.process_state() - - if k_min >= self.h[s]: - break - - def modify_cost(self, s): - # if node in CLOSED set, put it into OPEN set. - # Since cost may be changed between s - s.parent, calc cost(s, s.p) again - - if self.t[s] == 'CLOSED': - self.insert(s, self.h[self.PARENT[s]] + self.cost(s, self.PARENT[s])) - - def get_neighbor(self, s): - nei_list = set() - - for u in self.u_set: - s_next = tuple([s[i] + u[i] for i in range(2)]) - if s_next not in self.obs: - nei_list.add(s_next) - - return nei_list - - def cost(self, s_start, s_goal): - """ - Calculate Cost for this motion - :param s_start: starting node - :param s_goal: end node - :return: Cost for this motion - :note: Cost function could be more complicate! - """ - - if self.is_collision(s_start, s_goal): - return float("inf") - - return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1]) - - def is_collision(self, s_start, s_end): - if s_start in self.obs or s_end in self.obs: - return True - - if s_start[0] != s_end[0] and s_start[1] != s_end[1]: - if s_end[0] - s_start[0] == s_start[1] - s_end[1]: - s1 = (min(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - else: - s1 = (min(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - - if s1 in self.obs or s2 in self.obs: - return True - - return False - - def plot_path(self, path): - px = [x[0] for x in path] - py = [x[1] for x in path] - plt.plot(px, py, linewidth=2) - plt.plot(self.s_start[0], self.s_start[1], "bs") - plt.plot(self.s_goal[0], self.s_goal[1], "gs") - - def plot_visited(self, visited): - color = ['gainsboro', 'lightgray', 'silver', 'darkgray', - 'bisque', 'navajowhite', 'moccasin', 'wheat', - 'powderblue', 'skyblue', 'lightskyblue', 'cornflowerblue'] - - if self.count >= len(color) - 1: - self.count = 0 - - for x in visited: - plt.plot(x[0], x[1], marker='s', color=color[self.count]) - - -def main(): - s_start = (5, 5) - s_goal = (45, 25) - dstar = DStar(s_start, s_goal) - dstar.run(s_start, s_goal) - - -if __name__ == '__main__': - main() diff --git a/src/Search_2D/D_star_Lite.py b/src/Search_2D/D_star_Lite.py deleted file mode 100644 index 4996be2..0000000 --- a/src/Search_2D/D_star_Lite.py +++ /dev/null @@ -1,239 +0,0 @@ -""" -D_star_Lite 2D -@author: huiming zhou -""" - -import os -import sys -import math -import matplotlib.pyplot as plt - -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../../Search_based_Planning/") - -from Search_2D import plotting, env - - -class DStar: - def __init__(self, s_start, s_goal, heuristic_type): - self.s_start, self.s_goal = s_start, s_goal - self.heuristic_type = heuristic_type - - self.Env = env.Env() # class Env - self.Plot = plotting.Plotting(s_start, s_goal) - - self.u_set = self.Env.motions # feasible input set - self.obs = self.Env.obs # position of obstacles - self.x = self.Env.x_range - self.y = self.Env.y_range - - self.g, self.rhs, self.U = {}, {}, {} - self.km = 0 - - for i in range(1, self.Env.x_range - 1): - for j in range(1, self.Env.y_range - 1): - self.rhs[(i, j)] = float("inf") - self.g[(i, j)] = float("inf") - - self.rhs[self.s_goal] = 0.0 - self.U[self.s_goal] = self.CalculateKey(self.s_goal) - self.visited = set() - self.count = 0 - self.fig = plt.figure() - - def run(self): - self.Plot.plot_grid("D* Lite") - self.ComputePath() - self.plot_path(self.extract_path()) - self.fig.canvas.mpl_connect('button_press_event', self.on_press) - plt.show() - - def on_press(self, event): - x, y = event.xdata, event.ydata - if x < 0 or x > self.x - 1 or y < 0 or y > self.y - 1: - print("Please choose right area!") - else: - x, y = int(x), int(y) - print("Change position: s =", x, ",", "y =", y) - - s_curr = self.s_start - s_last = self.s_start - i = 0 - path = [self.s_start] - - while s_curr != self.s_goal: - s_list = {} - - for s in self.get_neighbor(s_curr): - s_list[s] = self.g[s] + self.cost(s_curr, s) - s_curr = min(s_list, key=s_list.get) - path.append(s_curr) - - if i < 1: - self.km += self.h(s_last, s_curr) - s_last = s_curr - if (x, y) not in self.obs: - self.obs.add((x, y)) - plt.plot(x, y, 'sk') - self.g[(x, y)] = float("inf") - self.rhs[(x, y)] = float("inf") - else: - self.obs.remove((x, y)) - plt.plot(x, y, marker='s', color='white') - self.UpdateVertex((x, y)) - for s in self.get_neighbor((x, y)): - self.UpdateVertex(s) - i += 1 - - self.count += 1 - self.visited = set() - self.ComputePath() - - self.plot_visited(self.visited) - self.plot_path(path) - self.fig.canvas.draw_idle() - - def ComputePath(self): - while True: - s, v = self.TopKey() - if v >= self.CalculateKey(self.s_start) and \ - self.rhs[self.s_start] == self.g[self.s_start]: - break - - k_old = v - self.U.pop(s) - self.visited.add(s) - - if k_old < self.CalculateKey(s): - self.U[s] = self.CalculateKey(s) - elif self.g[s] > self.rhs[s]: - self.g[s] = self.rhs[s] - for x in self.get_neighbor(s): - self.UpdateVertex(x) - else: - self.g[s] = float("inf") - self.UpdateVertex(s) - for x in self.get_neighbor(s): - self.UpdateVertex(x) - - def UpdateVertex(self, s): - if s != self.s_goal: - self.rhs[s] = float("inf") - for x in self.get_neighbor(s): - self.rhs[s] = min(self.rhs[s], self.g[x] + self.cost(s, x)) - if s in self.U: - self.U.pop(s) - - if self.g[s] != self.rhs[s]: - self.U[s] = self.CalculateKey(s) - - def CalculateKey(self, s): - return [min(self.g[s], self.rhs[s]) + self.h(self.s_start, s) + self.km, - min(self.g[s], self.rhs[s])] - - def TopKey(self): - """ - :return: return the min key and its value. - """ - - s = min(self.U, key=self.U.get) - return s, self.U[s] - - def h(self, s_start, s_goal): - heuristic_type = self.heuristic_type # heuristic type - - if heuristic_type == "manhattan": - return abs(s_goal[0] - s_start[0]) + abs(s_goal[1] - s_start[1]) - else: - return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1]) - - def cost(self, s_start, s_goal): - """ - Calculate Cost for this motion - :param s_start: starting node - :param s_goal: end node - :return: Cost for this motion - :note: Cost function could be more complicate! - """ - - if self.is_collision(s_start, s_goal): - return float("inf") - - return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1]) - - def is_collision(self, s_start, s_end): - if s_start in self.obs or s_end in self.obs: - return True - - if s_start[0] != s_end[0] and s_start[1] != s_end[1]: - if s_end[0] - s_start[0] == s_start[1] - s_end[1]: - s1 = (min(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - else: - s1 = (min(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - - if s1 in self.obs or s2 in self.obs: - return True - - return False - - def get_neighbor(self, s): - nei_list = set() - for u in self.u_set: - s_next = tuple([s[i] + u[i] for i in range(2)]) - if s_next not in self.obs: - nei_list.add(s_next) - - return nei_list - - def extract_path(self): - """ - Extract the path based on the PARENT set. - :return: The planning path - """ - - path = [self.s_start] - s = self.s_start - - for k in range(100): - g_list = {} - for x in self.get_neighbor(s): - if not self.is_collision(s, x): - g_list[x] = self.g[x] - s = min(g_list, key=g_list.get) - path.append(s) - if s == self.s_goal: - break - - return list(path) - - def plot_path(self, path): - px = [x[0] for x in path] - py = [x[1] for x in path] - plt.plot(px, py, linewidth=2) - plt.plot(self.s_start[0], self.s_start[1], "bs") - plt.plot(self.s_goal[0], self.s_goal[1], "gs") - - def plot_visited(self, visited): - color = ['gainsboro', 'lightgray', 'silver', 'darkgray', - 'bisque', 'navajowhite', 'moccasin', 'wheat', - 'powderblue', 'skyblue', 'lightskyblue', 'cornflowerblue'] - - if self.count >= len(color) - 1: - self.count = 0 - - for x in visited: - plt.plot(x[0], x[1], marker='s', color=color[self.count]) - - -def main(): - s_start = (5, 5) - s_goal = (45, 25) - - dstar = DStar(s_start, s_goal, "euclidean") - dstar.run() - - -if __name__ == '__main__': - main() diff --git a/src/Search_2D/Dijkstra.py b/src/Search_2D/Dijkstra.py deleted file mode 100644 index e5e7b68..0000000 --- a/src/Search_2D/Dijkstra.py +++ /dev/null @@ -1,69 +0,0 @@ -""" -Dijkstra 2D -@author: huiming zhou -""" - -import os -import sys -import math -import heapq - -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../../Search_based_Planning/") - -from Search_2D import plotting, env - -from Search_2D.Astar import AStar - - -class Dijkstra(AStar): - """Dijkstra set the cost as the priority - """ - def searching(self): - """ - Breadth-first Searching. - :return: path, visited order - """ - - self.PARENT[self.s_start] = self.s_start - self.g[self.s_start] = 0 - self.g[self.s_goal] = math.inf - heapq.heappush(self.OPEN, - (0, self.s_start)) - - while self.OPEN: - _, s = heapq.heappop(self.OPEN) - self.CLOSED.append(s) - - if s == self.s_goal: - break - - for s_n in self.get_neighbor(s): - new_cost = self.g[s] + self.cost(s, s_n) - - if s_n not in self.g: - self.g[s_n] = math.inf - - if new_cost < self.g[s_n]: # conditions for updating Cost - self.g[s_n] = new_cost - self.PARENT[s_n] = s - - # best first set the heuristics as the priority - heapq.heappush(self.OPEN, (new_cost, s_n)) - - return self.extract_path(self.PARENT), self.CLOSED - - -def main(): - s_start = (5, 5) - s_goal = (45, 25) - - dijkstra = Dijkstra(s_start, s_goal, 'None') - plot = plotting.Plotting(s_start, s_goal) - - path, visited = dijkstra.searching() - plot.animation(path, visited, "Dijkstra's") # animation generate - - -if __name__ == '__main__': - main() diff --git a/src/Search_2D/LPAstar.py b/src/Search_2D/LPAstar.py deleted file mode 100644 index 4fd70ae..0000000 --- a/src/Search_2D/LPAstar.py +++ /dev/null @@ -1,256 +0,0 @@ -""" -LPA_star 2D -@author: huiming zhou -""" - -import os -import sys -import math -import matplotlib.pyplot as plt - -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../../Search_based_Planning/") - -from Search_2D import plotting, env - - -class LPAStar: - def __init__(self, s_start, s_goal, heuristic_type): - self.s_start, self.s_goal = s_start, s_goal - self.heuristic_type = heuristic_type - - self.Env = env.Env() - self.Plot = plotting.Plotting(self.s_start, self.s_goal) - - self.u_set = self.Env.motions - self.obs = self.Env.obs - self.x = self.Env.x_range - self.y = self.Env.y_range - - self.g, self.rhs, self.U = {}, {}, {} - - for i in range(self.Env.x_range): - for j in range(self.Env.y_range): - self.rhs[(i, j)] = float("inf") - self.g[(i, j)] = float("inf") - - self.rhs[self.s_start] = 0 - self.U[self.s_start] = self.CalculateKey(self.s_start) - self.visited = set() - self.count = 0 - - self.fig = plt.figure() - - def run(self): - self.Plot.plot_grid("Lifelong Planning A*") - - self.ComputeShortestPath() - self.plot_path(self.extract_path()) - self.fig.canvas.mpl_connect('button_press_event', self.on_press) - - plt.show() - - def on_press(self, event): - x, y = event.xdata, event.ydata - if x < 0 or x > self.x - 1 or y < 0 or y > self.y - 1: - print("Please choose right area!") - else: - x, y = int(x), int(y) - print("Change position: s =", x, ",", "y =", y) - - self.visited = set() - self.count += 1 - - if (x, y) not in self.obs: - self.obs.add((x, y)) - else: - self.obs.remove((x, y)) - self.UpdateVertex((x, y)) - - self.Plot.update_obs(self.obs) - - for s_n in self.get_neighbor((x, y)): - self.UpdateVertex(s_n) - - self.ComputeShortestPath() - - plt.cla() - self.Plot.plot_grid("Lifelong Planning A*") - self.plot_visited(self.visited) - self.plot_path(self.extract_path()) - self.fig.canvas.draw_idle() - - def ComputeShortestPath(self): - while True: - s, v = self.TopKey() - - if v >= self.CalculateKey(self.s_goal) and \ - self.rhs[self.s_goal] == self.g[self.s_goal]: - break - - self.U.pop(s) - self.visited.add(s) - - if self.g[s] > self.rhs[s]: - - # Condition: over-consistent (eg: deleted obstacles) - # So, rhs[s] decreased -- > rhs[s] < g[s] - self.g[s] = self.rhs[s] - else: - - # Condition: # under-consistent (eg: added obstacles) - # So, rhs[s] increased --> rhs[s] > g[s] - self.g[s] = float("inf") - self.UpdateVertex(s) - - for s_n in self.get_neighbor(s): - self.UpdateVertex(s_n) - - def UpdateVertex(self, s): - """ - update the status and the current cost to come of state s. - :param s: state s - """ - - if s != self.s_start: - - # Condition: cost of parent of s changed - # Since we do not record the children of a state, we need to enumerate its neighbors - self.rhs[s] = min(self.g[s_n] + self.cost(s_n, s) - for s_n in self.get_neighbor(s)) - - if s in self.U: - self.U.pop(s) - - if self.g[s] != self.rhs[s]: - - # Condition: current cost to come is different to that of last time - # state s should be added into OPEN set (set U) - self.U[s] = self.CalculateKey(s) - - def TopKey(self): - """ - :return: return the min key and its value. - """ - - s = min(self.U, key=self.U.get) - - return s, self.U[s] - - def CalculateKey(self, s): - - return [min(self.g[s], self.rhs[s]) + self.h(s), - min(self.g[s], self.rhs[s])] - - def get_neighbor(self, s): - """ - find neighbors of state s that not in obstacles. - :param s: state - :return: neighbors - """ - - s_list = set() - - for u in self.u_set: - s_next = tuple([s[i] + u[i] for i in range(2)]) - if s_next not in self.obs: - s_list.add(s_next) - - return s_list - - def h(self, s): - """ - Calculate heuristic. - :param s: current node (state) - :return: heuristic function value - """ - - heuristic_type = self.heuristic_type # heuristic type - goal = self.s_goal # goal node - - if heuristic_type == "manhattan": - return abs(goal[0] - s[0]) + abs(goal[1] - s[1]) - else: - return math.hypot(goal[0] - s[0], goal[1] - s[1]) - - def cost(self, s_start, s_goal): - """ - Calculate Cost for this motion - :param s_start: starting node - :param s_goal: end node - :return: Cost for this motion - :note: Cost function could be more complicate! - """ - - if self.is_collision(s_start, s_goal): - return float("inf") - - return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1]) - - def is_collision(self, s_start, s_end): - if s_start in self.obs or s_end in self.obs: - return True - - if s_start[0] != s_end[0] and s_start[1] != s_end[1]: - if s_end[0] - s_start[0] == s_start[1] - s_end[1]: - s1 = (min(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - else: - s1 = (min(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - - if s1 in self.obs or s2 in self.obs: - return True - - return False - - def extract_path(self): - """ - Extract the path based on the PARENT set. - :return: The planning path - """ - - path = [self.s_goal] - s = self.s_goal - - for k in range(100): - g_list = {} - for x in self.get_neighbor(s): - if not self.is_collision(s, x): - g_list[x] = self.g[x] - s = min(g_list, key=g_list.get) - path.append(s) - if s == self.s_start: - break - - return list(reversed(path)) - - def plot_path(self, path): - px = [x[0] for x in path] - py = [x[1] for x in path] - plt.plot(px, py, linewidth=2) - plt.plot(self.s_start[0], self.s_start[1], "bs") - plt.plot(self.s_goal[0], self.s_goal[1], "gs") - - def plot_visited(self, visited): - color = ['gainsboro', 'lightgray', 'silver', 'darkgray', - 'bisque', 'navajowhite', 'moccasin', 'wheat', - 'powderblue', 'skyblue', 'lightskyblue', 'cornflowerblue'] - - if self.count >= len(color) - 1: - self.count = 0 - - for x in visited: - plt.plot(x[0], x[1], marker='s', color=color[self.count]) - - -def main(): - x_start = (5, 5) - x_goal = (45, 25) - - lpastar = LPAStar(x_start, x_goal, "Euclidean") - lpastar.run() - - -if __name__ == '__main__': - main() diff --git a/src/Search_2D/LRTAstar.py b/src/Search_2D/LRTAstar.py deleted file mode 100644 index 108903b..0000000 --- a/src/Search_2D/LRTAstar.py +++ /dev/null @@ -1,230 +0,0 @@ -""" -LRTA_star 2D (Learning Real-time A*) -@author: huiming zhou -""" - -import os -import sys -import copy -import math - -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../../Search_based_Planning/") - -from Search_2D import queue, plotting, env - - -class LrtAStarN: - def __init__(self, s_start, s_goal, N, heuristic_type): - self.s_start, self.s_goal = s_start, s_goal - self.heuristic_type = heuristic_type - - self.Env = env.Env() - - self.u_set = self.Env.motions # feasible input set - self.obs = self.Env.obs # position of obstacles - - self.N = N # number of expand nodes each iteration - self.visited = [] # order of visited nodes in planning - self.path = [] # path of each iteration - self.h_table = {} # h_value table - - def init(self): - """ - initialize the h_value of all nodes in the environment. - it is a global table. - """ - - for i in range(self.Env.x_range): - for j in range(self.Env.y_range): - self.h_table[(i, j)] = self.h((i, j)) - - def searching(self): - self.init() - s_start = self.s_start # initialize start node - - while True: - OPEN, CLOSED = self.AStar(s_start, self.N) # OPEN, CLOSED sets in each iteration - - if OPEN == "FOUND": # reach the goal node - self.path.append(CLOSED) - break - - h_value = self.iteration(CLOSED) # h_value table of CLOSED nodes - - for x in h_value: - self.h_table[x] = h_value[x] - - s_start, path_k = self.extract_path_in_CLOSE(s_start, h_value) # x_init -> expected node in OPEN set - self.path.append(path_k) - - def extract_path_in_CLOSE(self, s_start, h_value): - path = [s_start] - s = s_start - - while True: - h_list = {} - - for s_n in self.get_neighbor(s): - if s_n in h_value: - h_list[s_n] = h_value[s_n] - else: - h_list[s_n] = self.h_table[s_n] - - s_key = min(h_list, key=h_list.get) # move to the smallest node with min h_value - path.append(s_key) # generate path - s = s_key # use end of this iteration as the start of next - - if s_key not in h_value: # reach the expected node in OPEN set - return s_key, path - - def iteration(self, CLOSED): - h_value = {} - - for s in CLOSED: - h_value[s] = float("inf") # initialize h_value of CLOSED nodes - - while True: - h_value_rec = copy.deepcopy(h_value) - for s in CLOSED: - h_list = [] - for s_n in self.get_neighbor(s): - if s_n not in CLOSED: - h_list.append(self.cost(s, s_n) + self.h_table[s_n]) - else: - h_list.append(self.cost(s, s_n) + h_value[s_n]) - h_value[s] = min(h_list) # update h_value of current node - - if h_value == h_value_rec: # h_value table converged - return h_value - - def AStar(self, x_start, N): - OPEN = queue.QueuePrior() # OPEN set - OPEN.put(x_start, self.h(x_start)) - CLOSED = [] # CLOSED set - g_table = {x_start: 0, self.s_goal: float("inf")} # Cost to come - PARENT = {x_start: x_start} # relations - count = 0 # counter - - while not OPEN.empty(): - count += 1 - s = OPEN.get() - CLOSED.append(s) - - if s == self.s_goal: # reach the goal node - self.visited.append(CLOSED) - return "FOUND", self.extract_path(x_start, PARENT) - - for s_n in self.get_neighbor(s): - if s_n not in CLOSED: - new_cost = g_table[s] + self.cost(s, s_n) - if s_n not in g_table: - g_table[s_n] = float("inf") - if new_cost < g_table[s_n]: # conditions for updating Cost - g_table[s_n] = new_cost - PARENT[s_n] = s - OPEN.put(s_n, g_table[s_n] + self.h_table[s_n]) - - if count == N: # expand needed CLOSED nodes - break - - self.visited.append(CLOSED) # visited nodes in each iteration - - return OPEN, CLOSED - - def get_neighbor(self, s): - """ - find neighbors of state s that not in obstacles. - :param s: state - :return: neighbors - """ - - s_list = [] - - for u in self.u_set: - s_next = tuple([s[i] + u[i] for i in range(2)]) - if s_next not in self.obs: - s_list.append(s_next) - - return s_list - - def extract_path(self, x_start, parent): - """ - Extract the path based on the relationship of nodes. - - :return: The planning path - """ - - path_back = [self.s_goal] - x_current = self.s_goal - - while True: - x_current = parent[x_current] - path_back.append(x_current) - - if x_current == x_start: - break - - return list(reversed(path_back)) - - def h(self, s): - """ - Calculate heuristic. - :param s: current node (state) - :return: heuristic function value - """ - - heuristic_type = self.heuristic_type # heuristic type - goal = self.s_goal # goal node - - if heuristic_type == "manhattan": - return abs(goal[0] - s[0]) + abs(goal[1] - s[1]) - else: - return math.hypot(goal[0] - s[0], goal[1] - s[1]) - - def cost(self, s_start, s_goal): - """ - Calculate Cost for this motion - :param s_start: starting node - :param s_goal: end node - :return: Cost for this motion - :note: Cost function could be more complicate! - """ - - if self.is_collision(s_start, s_goal): - return float("inf") - - return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1]) - - def is_collision(self, s_start, s_end): - if s_start in self.obs or s_end in self.obs: - return True - - if s_start[0] != s_end[0] and s_start[1] != s_end[1]: - if s_end[0] - s_start[0] == s_start[1] - s_end[1]: - s1 = (min(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - else: - s1 = (min(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - - if s1 in self.obs or s2 in self.obs: - return True - - return False - - -def main(): - s_start = (10, 5) - s_goal = (45, 25) - - lrta = LrtAStarN(s_start, s_goal, 250, "euclidean") - plot = plotting.Plotting(s_start, s_goal) - - lrta.searching() - plot.animation_lrta(lrta.path, lrta.visited, - "Learning Real-time A* (LRTA*)") - - -if __name__ == '__main__': - main() diff --git a/src/Search_2D/RTAAStar.py b/src/Search_2D/RTAAStar.py deleted file mode 100644 index de0a615..0000000 --- a/src/Search_2D/RTAAStar.py +++ /dev/null @@ -1,237 +0,0 @@ -""" -RTAAstar 2D (Real-time Adaptive A*) -@author: huiming zhou -""" - -import os -import sys -import copy -import math - -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../../Search_based_Planning/") - -from Search_2D import queue, plotting, env - - -class RTAAStar: - def __init__(self, s_start, s_goal, N, heuristic_type): - self.s_start, self.s_goal = s_start, s_goal - self.heuristic_type = heuristic_type - - self.Env = env.Env() - - self.u_set = self.Env.motions # feasible input set - self.obs = self.Env.obs # position of obstacles - - self.N = N # number of expand nodes each iteration - self.visited = [] # order of visited nodes in planning - self.path = [] # path of each iteration - self.h_table = {} # h_value table - - def init(self): - """ - initialize the h_value of all nodes in the environment. - it is a global table. - """ - - for i in range(self.Env.x_range): - for j in range(self.Env.y_range): - self.h_table[(i, j)] = self.h((i, j)) - - def searching(self): - self.init() - s_start = self.s_start # initialize start node - - while True: - OPEN, CLOSED, g_table, PARENT = \ - self.Astar(s_start, self.N) - - if OPEN == "FOUND": # reach the goal node - self.path.append(CLOSED) - break - - s_next, h_value = self.cal_h_value(OPEN, CLOSED, g_table, PARENT) - - for x in h_value: - self.h_table[x] = h_value[x] - - s_start, path_k = self.extract_path_in_CLOSE(s_start, s_next, h_value) - self.path.append(path_k) - - def cal_h_value(self, OPEN, CLOSED, g_table, PARENT): - v_open = {} - h_value = {} - for (_, x) in OPEN.enumerate(): - v_open[x] = g_table[PARENT[x]] + 1 + self.h_table[x] - s_open = min(v_open, key=v_open.get) - f_min = v_open[s_open] - for x in CLOSED: - h_value[x] = f_min - g_table[x] - - return s_open, h_value - - def iteration(self, CLOSED): - h_value = {} - - for s in CLOSED: - h_value[s] = float("inf") # initialize h_value of CLOSED nodes - - while True: - h_value_rec = copy.deepcopy(h_value) - for s in CLOSED: - h_list = [] - for s_n in self.get_neighbor(s): - if s_n not in CLOSED: - h_list.append(self.cost(s, s_n) + self.h_table[s_n]) - else: - h_list.append(self.cost(s, s_n) + h_value[s_n]) - h_value[s] = min(h_list) # update h_value of current node - - if h_value == h_value_rec: # h_value table converged - return h_value - - def Astar(self, x_start, N): - OPEN = queue.QueuePrior() # OPEN set - OPEN.put(x_start, self.h_table[x_start]) - CLOSED = [] # CLOSED set - g_table = {x_start: 0, self.s_goal: float("inf")} # Cost to come - PARENT = {x_start: x_start} # relations - count = 0 # counter - - while not OPEN.empty(): - count += 1 - s = OPEN.get() - CLOSED.append(s) - - if s == self.s_goal: # reach the goal node - self.visited.append(CLOSED) - return "FOUND", self.extract_path(x_start, PARENT), [], [] - - for s_n in self.get_neighbor(s): - if s_n not in CLOSED: - new_cost = g_table[s] + self.cost(s, s_n) - if s_n not in g_table: - g_table[s_n] = float("inf") - if new_cost < g_table[s_n]: # conditions for updating Cost - g_table[s_n] = new_cost - PARENT[s_n] = s - OPEN.put(s_n, g_table[s_n] + self.h_table[s_n]) - - if count == N: # expand needed CLOSED nodes - break - - self.visited.append(CLOSED) # visited nodes in each iteration - - return OPEN, CLOSED, g_table, PARENT - - def get_neighbor(self, s): - """ - find neighbors of state s that not in obstacles. - :param s: state - :return: neighbors - """ - - s_list = set() - - for u in self.u_set: - s_next = tuple([s[i] + u[i] for i in range(2)]) - if s_next not in self.obs: - s_list.add(s_next) - - return s_list - - def extract_path_in_CLOSE(self, s_end, s_start, h_value): - path = [s_start] - s = s_start - - while True: - h_list = {} - for s_n in self.get_neighbor(s): - if s_n in h_value: - h_list[s_n] = h_value[s_n] - s_key = max(h_list, key=h_list.get) # move to the smallest node with min h_value - path.append(s_key) # generate path - s = s_key # use end of this iteration as the start of next - - if s_key == s_end: # reach the expected node in OPEN set - return s_start, list(reversed(path)) - - def extract_path(self, x_start, parent): - """ - Extract the path based on the relationship of nodes. - :return: The planning path - """ - - path = [self.s_goal] - s = self.s_goal - - while True: - s = parent[s] - path.append(s) - if s == x_start: - break - - return list(reversed(path)) - - def h(self, s): - """ - Calculate heuristic. - :param s: current node (state) - :return: heuristic function value - """ - - heuristic_type = self.heuristic_type # heuristic type - goal = self.s_goal # goal node - - if heuristic_type == "manhattan": - return abs(goal[0] - s[0]) + abs(goal[1] - s[1]) - else: - return math.hypot(goal[0] - s[0], goal[1] - s[1]) - - def cost(self, s_start, s_goal): - """ - Calculate Cost for this motion - :param s_start: starting node - :param s_goal: end node - :return: Cost for this motion - :note: Cost function could be more complicate! - """ - - if self.is_collision(s_start, s_goal): - return float("inf") - - return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1]) - - def is_collision(self, s_start, s_end): - if s_start in self.obs or s_end in self.obs: - return True - - if s_start[0] != s_end[0] and s_start[1] != s_end[1]: - if s_end[0] - s_start[0] == s_start[1] - s_end[1]: - s1 = (min(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - else: - s1 = (min(s_start[0], s_end[0]), max(s_start[1], s_end[1])) - s2 = (max(s_start[0], s_end[0]), min(s_start[1], s_end[1])) - - if s1 in self.obs or s2 in self.obs: - return True - - return False - - -def main(): - s_start = (10, 5) - s_goal = (45, 25) - - rtaa = RTAAStar(s_start, s_goal, 240, "euclidean") - plot = plotting.Plotting(s_start, s_goal) - - rtaa.searching() - plot.animation_lrta(rtaa.path, rtaa.visited, - "Real-time Adaptive A* (RTAA*)") - - -if __name__ == '__main__': - main() diff --git a/src/Search_2D/__pycache__/Astar.cpython-38.pyc b/src/Search_2D/__pycache__/Astar.cpython-38.pyc deleted file mode 100644 index 7d90ba3..0000000 Binary files a/src/Search_2D/__pycache__/Astar.cpython-38.pyc and /dev/null differ diff --git a/src/Search_2D/__pycache__/env.cpython-37.pyc b/src/Search_2D/__pycache__/env.cpython-37.pyc deleted file mode 100644 index 945aa4d..0000000 Binary files a/src/Search_2D/__pycache__/env.cpython-37.pyc and /dev/null differ diff --git a/src/Search_2D/__pycache__/env.cpython-38.pyc b/src/Search_2D/__pycache__/env.cpython-38.pyc deleted file mode 100644 index e45c75b..0000000 Binary files a/src/Search_2D/__pycache__/env.cpython-38.pyc and /dev/null differ diff --git a/src/Search_2D/__pycache__/env.cpython-39.pyc b/src/Search_2D/__pycache__/env.cpython-39.pyc deleted file mode 100644 index 4776345..0000000 Binary files a/src/Search_2D/__pycache__/env.cpython-39.pyc and /dev/null differ diff --git a/src/Search_2D/__pycache__/plotting.cpython-37.pyc b/src/Search_2D/__pycache__/plotting.cpython-37.pyc deleted file mode 100644 index 8a41db2..0000000 Binary files a/src/Search_2D/__pycache__/plotting.cpython-37.pyc and /dev/null differ diff --git a/src/Search_2D/__pycache__/plotting.cpython-38.pyc b/src/Search_2D/__pycache__/plotting.cpython-38.pyc deleted file mode 100644 index 5e8cff3..0000000 Binary files a/src/Search_2D/__pycache__/plotting.cpython-38.pyc and /dev/null differ diff --git a/src/Search_2D/__pycache__/plotting.cpython-39.pyc b/src/Search_2D/__pycache__/plotting.cpython-39.pyc deleted file mode 100644 index c381ea6..0000000 Binary files a/src/Search_2D/__pycache__/plotting.cpython-39.pyc and /dev/null differ diff --git a/src/Search_2D/__pycache__/queue.cpython-37.pyc b/src/Search_2D/__pycache__/queue.cpython-37.pyc deleted file mode 100644 index 6c5f684..0000000 Binary files a/src/Search_2D/__pycache__/queue.cpython-37.pyc and /dev/null differ diff --git a/src/Search_2D/__pycache__/queue.cpython-38.pyc b/src/Search_2D/__pycache__/queue.cpython-38.pyc deleted file mode 100644 index 69c46c6..0000000 Binary files a/src/Search_2D/__pycache__/queue.cpython-38.pyc and /dev/null differ diff --git a/src/Search_2D/bfs.py b/src/Search_2D/bfs.py deleted file mode 100644 index 881e7ff..0000000 --- a/src/Search_2D/bfs.py +++ /dev/null @@ -1,69 +0,0 @@ -""" -Breadth-first Searching_2D (BFS) -@author: huiming zhou -""" - -import os -import sys -from collections import deque - -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../../Search_based_Planning/") - -from Search_2D import plotting, env -from Search_2D.Astar import AStar -import math -import heapq - -class BFS(AStar): - """BFS add the new visited node in the end of the openset - """ - def searching(self): - """ - Breadth-first Searching. - :return: path, visited order - """ - - self.PARENT[self.s_start] = self.s_start - self.g[self.s_start] = 0 - self.g[self.s_goal] = math.inf - heapq.heappush(self.OPEN, - (0, self.s_start)) - - while self.OPEN: - _, s = heapq.heappop(self.OPEN) - self.CLOSED.append(s) - - if s == self.s_goal: - break - - for s_n in self.get_neighbor(s): - new_cost = self.g[s] + self.cost(s, s_n) - - if s_n not in self.g: - self.g[s_n] = math.inf - - if new_cost < self.g[s_n]: # conditions for updating Cost - self.g[s_n] = new_cost - self.PARENT[s_n] = s - - # bfs, add new node to the end of the openset - prior = self.OPEN[-1][0]+1 if len(self.OPEN)>0 else 0 - heapq.heappush(self.OPEN, (prior, s_n)) - - return self.extract_path(self.PARENT), self.CLOSED - - -def main(): - s_start = (5, 5) - s_goal = (45, 25) - - bfs = BFS(s_start, s_goal, 'None') - plot = plotting.Plotting(s_start, s_goal) - - path, visited = bfs.searching() - plot.animation(path, visited, "Breadth-first Searching (BFS)") - - -if __name__ == '__main__': - main() diff --git a/src/Search_2D/dfs.py b/src/Search_2D/dfs.py deleted file mode 100644 index 3b30b03..0000000 --- a/src/Search_2D/dfs.py +++ /dev/null @@ -1,65 +0,0 @@ - -import os -import sys -import math -import heapq - -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../../Search_based_Planning/") - -from Search_2D import plotting, env -from Search_2D.Astar import AStar - -class DFS(AStar): - """DFS add the new visited node in the front of the openset - """ - def searching(self): - """ - Breadth-first Searching. - :return: path, visited order - """ - - self.PARENT[self.s_start] = self.s_start - self.g[self.s_start] = 0 - self.g[self.s_goal] = math.inf - heapq.heappush(self.OPEN, - (0, self.s_start)) - - while self.OPEN: - _, s = heapq.heappop(self.OPEN) - self.CLOSED.append(s) - - if s == self.s_goal: - break - - for s_n in self.get_neighbor(s): - new_cost = self.g[s] + self.cost(s, s_n) - - if s_n not in self.g: - self.g[s_n] = math.inf - - if new_cost < self.g[s_n]: # conditions for updating Cost - self.g[s_n] = new_cost - self.PARENT[s_n] = s - - # dfs, add new node to the front of the openset - prior = self.OPEN[0][0]-1 if len(self.OPEN)>0 else 0 - heapq.heappush(self.OPEN, (prior, s_n)) - - return self.extract_path(self.PARENT), self.CLOSED - - -def main(): - s_start = (5, 5) - s_goal = (45, 25) - - dfs = DFS(s_start, s_goal, 'None') - plot = plotting.Plotting(s_start, s_goal) - - path, visited = dfs.searching() - visited = list(dict.fromkeys(visited)) - plot.animation(path, visited, "Depth-first Searching (DFS)") # animation - - -if __name__ == '__main__': - main() diff --git a/src/Search_2D/env.py b/src/Search_2D/env.py deleted file mode 100644 index 9523c98..0000000 --- a/src/Search_2D/env.py +++ /dev/null @@ -1,52 +0,0 @@ -""" -Env 2D -@author: huiming zhou -""" - - -class Env: - def __init__(self): - self.x_range = 51 # size of background - self.y_range = 31 - self.motions = [(-1, 0), (-1, 1), (0, 1), (1, 1), - (1, 0), (1, -1), (0, -1), (-1, -1)] - self.obs = self.obs_map() - - def update_obs(self, obs): - self.obs = obs - - def obs_map(self): - """ - Initialize obstacles' positions - :return: map of obstacles - """ - - x = self.x_range #51 - y = self.y_range #31 - obs = set() - #画上下边框 - for i in range(x): - obs.add((i, 0)) - for i in range(x): - obs.add((i, y - 1)) - #画左右边框 - for i in range(y): - obs.add((0, i)) - for i in range(y): - obs.add((x - 1, i)) - - for i in range(2, 21): - obs.add((i, 15)) - for i in range(15): - obs.add((20, i)) - - for i in range(15, 30): - obs.add((30, i)) - for i in range(16): - obs.add((40, i)) - - return obs - -# if __name__ == '__main__': -# a = Env() -# print(a.obs) \ No newline at end of file diff --git a/src/Search_2D/plotting.py b/src/Search_2D/plotting.py deleted file mode 100644 index 1cf98a3..0000000 --- a/src/Search_2D/plotting.py +++ /dev/null @@ -1,165 +0,0 @@ -""" -Plot tools 2D -@author: huiming zhou -""" - -import os -import sys -import matplotlib.pyplot as plt - -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../../Search_based_Planning/") - -from Search_2D import env - - -class Plotting: - def __init__(self, xI, xG): - self.xI, self.xG = xI, xG - self.env = env.Env() - self.obs = self.env.obs_map() - - def update_obs(self, obs): - self.obs = obs - - def animation(self, path, visited, name): - self.plot_grid(name) - self.plot_visited(visited) - self.plot_path(path) - plt.show() - - def animation_lrta(self, path, visited, name): - self.plot_grid(name) - cl = self.color_list_2() - path_combine = [] - - for k in range(len(path)): - self.plot_visited(visited[k], cl[k]) - plt.pause(0.2) - self.plot_path(path[k]) - path_combine += path[k] - plt.pause(0.2) - if self.xI in path_combine: - path_combine.remove(self.xI) - self.plot_path(path_combine) - plt.show() - - def animation_ara_star(self, path, visited, name): - self.plot_grid(name) - cl_v, cl_p = self.color_list() - - for k in range(len(path)): - self.plot_visited(visited[k], cl_v[k]) - self.plot_path(path[k], cl_p[k], True) - plt.pause(0.5) - - plt.show() - - def animation_bi_astar(self, path, v_fore, v_back, name): - self.plot_grid(name) - self.plot_visited_bi(v_fore, v_back) - self.plot_path(path) - plt.show() - - def plot_grid(self, name): - obs_x = [x[0] for x in self.obs] - obs_y = [x[1] for x in self.obs] - - plt.plot(self.xI[0], self.xI[1], "bs") - plt.plot(self.xG[0], self.xG[1], "gs") - plt.plot(obs_x, obs_y, "sk") - plt.title(name) - plt.axis("equal") - - def plot_visited(self, visited, cl='gray'): - if self.xI in visited: - visited.remove(self.xI) - - if self.xG in visited: - visited.remove(self.xG) - - count = 0 - - for x in visited: - count += 1 - plt.plot(x[0], x[1], color=cl, marker='o') - plt.gcf().canvas.mpl_connect('key_release_event', - lambda event: [exit(0) if event.key == 'escape' else None]) - - if count < len(visited) / 3: - length = 20 - elif count < len(visited) * 2 / 3: - length = 30 - else: - length = 40 - # - # length = 15 - - if count % length == 0: - plt.pause(0.001) - plt.pause(0.01) - - def plot_path(self, path, cl='r', flag=False): - path_x = [path[i][0] for i in range(len(path))] - path_y = [path[i][1] for i in range(len(path))] - - if not flag: - plt.plot(path_x, path_y, linewidth='3', color='r') - else: - plt.plot(path_x, path_y, linewidth='3', color=cl) - - plt.plot(self.xI[0], self.xI[1], "bs") - plt.plot(self.xG[0], self.xG[1], "gs") - - plt.pause(0.01) - - def plot_visited_bi(self, v_fore, v_back): - if self.xI in v_fore: - v_fore.remove(self.xI) - - if self.xG in v_back: - v_back.remove(self.xG) - - len_fore, len_back = len(v_fore), len(v_back) - - for k in range(max(len_fore, len_back)): - if k < len_fore: - plt.plot(v_fore[k][0], v_fore[k][1], linewidth='3', color='gray', marker='o') - if k < len_back: - plt.plot(v_back[k][0], v_back[k][1], linewidth='3', color='cornflowerblue', marker='o') - - plt.gcf().canvas.mpl_connect('key_release_event', - lambda event: [exit(0) if event.key == 'escape' else None]) - - if k % 10 == 0: - plt.pause(0.001) - plt.pause(0.01) - - @staticmethod - def color_list(): - cl_v = ['silver', - 'wheat', - 'lightskyblue', - 'royalblue', - 'slategray'] - cl_p = ['gray', - 'orange', - 'deepskyblue', - 'red', - 'm'] - return cl_v, cl_p - - @staticmethod - def color_list_2(): - cl = ['silver', - 'steelblue', - 'dimgray', - 'cornflowerblue', - 'dodgerblue', - 'royalblue', - 'plum', - 'mediumslateblue', - 'mediumpurple', - 'blueviolet', - ] - return cl diff --git a/src/Search_2D/queue.py b/src/Search_2D/queue.py deleted file mode 100644 index 51703ae..0000000 --- a/src/Search_2D/queue.py +++ /dev/null @@ -1,62 +0,0 @@ -import collections -import heapq - - -class QueueFIFO: - """ - Class: QueueFIFO - Description: QueueFIFO is designed for First-in-First-out rule. - """ - - def __init__(self): - self.queue = collections.deque() - - def empty(self): - return len(self.queue) == 0 - - def put(self, node): - self.queue.append(node) # enter from back - - def get(self): - return self.queue.popleft() # leave from front - - -class QueueLIFO: - """ - Class: QueueLIFO - Description: QueueLIFO is designed for Last-in-First-out rule. - """ - - def __init__(self): - self.queue = collections.deque() - - def empty(self): - return len(self.queue) == 0 - - def put(self, node): - self.queue.append(node) # enter from back - - def get(self): - return self.queue.pop() # leave from back - - -class QueuePrior: - """ - Class: QueuePrior - Description: QueuePrior reorders elements using value [priority] - """ - - def __init__(self): - self.queue = [] - - def empty(self): - return len(self.queue) == 0 - - def put(self, item, priority): - heapq.heappush(self.queue, (priority, item)) # reorder s using priority - - def get(self): - return heapq.heappop(self.queue)[1] # pop out the smallest item - - def enumerate(self): - return self.queue