""" Dijkstra 2D @author: huiming zhou """ import os import sys import math import heapq sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../../Search_based_Planning/") from Search_2D import plotting, env from Search_2D.Astar import AStar class Dijkstra(AStar): """Dijkstra set the cost as the priority """ def searching(self): """ Breadth-first Searching. :return: path, visited order """ self.PARENT[self.s_start] = self.s_start self.g[self.s_start] = 0 self.g[self.s_goal] = math.inf heapq.heappush(self.OPEN, (0, self.s_start)) while self.OPEN: _, s = heapq.heappop(self.OPEN) self.CLOSED.append(s) if s == self.s_goal: break for s_n in self.get_neighbor(s): new_cost = self.g[s] + self.cost(s, s_n) if s_n not in self.g: self.g[s_n] = math.inf if new_cost < self.g[s_n]: # conditions for updating Cost self.g[s_n] = new_cost self.PARENT[s_n] = s # best first set the heuristics as the priority heapq.heappush(self.OPEN, (new_cost, s_n)) return self.extract_path(self.PARENT), self.CLOSED def main(): s_start = (5, 5) s_goal = (45, 25) dijkstra = Dijkstra(s_start, s_goal, 'None') plot = plotting.Plotting(s_start, s_goal) path, visited = dijkstra.searching() plot.animation(path, visited, "Dijkstra's") # animation generate if __name__ == '__main__': main()