""" A_star 2D @author: huiming zhou """ import os import sys import math import heapq sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../../PaddleClas-release-2.3") from Search_2D import plotting, env class AStar: """AStar set the cost + heuristics as the priority """ def __init__(self, s_start, s_goal, heuristic_type): self.s_start = s_start self.s_goal = s_goal self.heuristic_type = heuristic_type self.Env = env.Env() # class Env self.u_set = self.Env.motions # feasible input set self.obs = self.Env.obs # position of obstacles self.OPEN = [] # priority queue / OPEN set self.CLOSED = [] # CLOSED set / VISITED order self.PARENT = dict() # recorded parent self.g = dict() # cost to come def searching(self): """ A_star Searching. :return: path, visited order """ self.PARENT[self.s_start] = self.s_start self.g[self.s_start] = 0 self.g[self.s_goal] = math.inf heapq.heappush(self.OPEN, (self.f_value(self.s_start), self.s_start)) while self.OPEN: _, s = heapq.heappop(self.OPEN) self.CLOSED.append(s) if s == self.s_goal: # stop condition break for s_n in self.get_neighbor(s): new_cost = self.g[s] + self.cost(s, s_n) if s_n not in self.g: self.g[s_n] = math.inf if new_cost < self.g[s_n]: # conditions for updating Cost self.g[s_n] = new_cost self.PARENT[s_n] = s heapq.heappush(self.OPEN, (self.f_value(s_n), s_n)) return self.extract_path(self.PARENT), self.CLOSED def searching_repeated_astar(self, e): """ repeated A*. :param e: weight of A* :return: path and visited order """ path, visited = [], [] while e >= 1: p_k, v_k = self.repeated_searching(self.s_start, self.s_goal, e) path.append(p_k) visited.append(v_k) e -= 0.5 return path, visited def repeated_searching(self, s_start, s_goal, e): """ run A* with weight e. :param s_start: starting state :param s_goal: goal state :param e: weight of a* :return: path and visited order. """ g = {s_start: 0, s_goal: float("inf")} PARENT = {s_start: s_start} OPEN = [] CLOSED = [] heapq.heappush(OPEN, (g[s_start] + e * self.heuristic(s_start), s_start)) while OPEN: _, s = heapq.heappop(OPEN) CLOSED.append(s) if s == s_goal: break for s_n in self.get_neighbor(s): new_cost = g[s] + self.cost(s, s_n) if s_n not in g: g[s_n] = math.inf if new_cost < g[s_n]: # conditions for updating Cost g[s_n] = new_cost PARENT[s_n] = s heapq.heappush(OPEN, (g[s_n] + e * self.heuristic(s_n), s_n)) return self.extract_path(PARENT), CLOSED def get_neighbor(self, s): """ find neighbors of state s that not in obstacles. :param s: state :return: neighbors """ return [(s[0] + u[0], s[1] + u[1]) for u in self.u_set] def cost(self, s_start, s_goal): """ Calculate Cost for this motion :param s_start: starting node :param s_goal: end node :return: Cost for this motion :note: Cost function could be more complicate! """ if self.is_collision(s_start, s_goal): return math.inf return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1]) def is_collision(self, s_start, s_end): """ check if the line segment (s_start, s_end) is collision. :param s_start: start node :param s_end: end node :return: True: is collision / False: not collision """ if s_start in self.obs or s_end in self.obs: return True if s_start[0] != s_end[0] and s_start[1] != s_end[1]: if s_end[0] - s_start[0] == s_start[1] - s_end[1]: s1 = (min(s_start[0], s_end[0]), min(s_start[1], s_end[1])) s2 = (max(s_start[0], s_end[0]), max(s_start[1], s_end[1])) else: s1 = (min(s_start[0], s_end[0]), max(s_start[1], s_end[1])) s2 = (max(s_start[0], s_end[0]), min(s_start[1], s_end[1])) if s1 in self.obs or s2 in self.obs: return True return False def f_value(self, s): """ f = g + h. (g: Cost to come, h: heuristic value) :param s: current state :return: f """ return self.g[s] + self.heuristic(s) def extract_path(self, PARENT): """ Extract the path based on the PARENT set. :return: The planning path """ path = [self.s_goal] s = self.s_goal while True: s = PARENT[s] path.append(s) if s == self.s_start: break return list(path) def heuristic(self, s): """ Calculate heuristic. :param s: current node (state) :return: heuristic function value """ heuristic_type = self.heuristic_type # heuristic type goal = self.s_goal # goal node if heuristic_type == "manhattan": return abs(goal[0] - s[0]) + abs(goal[1] - s[1]) else: return math.hypot(goal[0] - s[0], goal[1] - s[1]) def main(): s_start = (5, 5) s_goal = (45, 25) astar = AStar(s_start, s_goal, "euclidean") plot = plotting.Plotting(s_start, s_goal) path, visited = astar.searching() plot.animation(path, visited, "A*") # animation # path, visited = astar.searching_repeated_astar(2.5) # initial weight e = 2.5 # plot.animation_ara_star(path, visited, "Repeated A*") if __name__ == '__main__': main()