""" ARA_star 2D (Anytime Repairing A*) @author: huiming zhou @description: local inconsistency: g-value decreased. g(s) decreased introduces a local inconsistency between s and its successors. """ import os import sys import math sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../../Search_based_Planning/") from Search_2D import plotting, env class AraStar: def __init__(self, s_start, s_goal, e, heuristic_type): self.s_start, self.s_goal = s_start, s_goal self.heuristic_type = heuristic_type self.Env = env.Env() # class Env self.u_set = self.Env.motions # feasible input set self.obs = self.Env.obs # position of obstacles self.e = e # weight self.g = dict() # Cost to come self.OPEN = dict() # priority queue / OPEN set self.CLOSED = set() # CLOSED set self.INCONS = {} # INCONSISTENT set self.PARENT = dict() # relations self.path = [] # planning path self.visited = [] # order of visited nodes def init(self): """ initialize each set. """ self.g[self.s_start] = 0.0 self.g[self.s_goal] = math.inf self.OPEN[self.s_start] = self.f_value(self.s_start) self.PARENT[self.s_start] = self.s_start def searching(self): self.init() self.ImprovePath() self.path.append(self.extract_path()) while self.update_e() > 1: # continue condition self.e -= 0.4 # increase weight self.OPEN.update(self.INCONS) self.OPEN = {s: self.f_value(s) for s in self.OPEN} # update f_value of OPEN set self.INCONS = dict() self.CLOSED = set() self.ImprovePath() # improve path self.path.append(self.extract_path()) return self.path, self.visited def ImprovePath(self): """ :return: a e'-suboptimal path """ visited_each = [] while True: s, f_small = self.calc_smallest_f() if self.f_value(self.s_goal) <= f_small: break self.OPEN.pop(s) self.CLOSED.add(s) for s_n in self.get_neighbor(s): if s_n in self.obs: continue new_cost = self.g[s] + self.cost(s, s_n) if s_n not in self.g or new_cost < self.g[s_n]: self.g[s_n] = new_cost self.PARENT[s_n] = s visited_each.append(s_n) if s_n not in self.CLOSED: self.OPEN[s_n] = self.f_value(s_n) else: self.INCONS[s_n] = 0.0 self.visited.append(visited_each) def calc_smallest_f(self): """ :return: node with smallest f_value in OPEN set. """ s_small = min(self.OPEN, key=self.OPEN.get) return s_small, self.OPEN[s_small] def get_neighbor(self, s): """ find neighbors of state s that not in obstacles. :param s: state :return: neighbors """ return {(s[0] + u[0], s[1] + u[1]) for u in self.u_set} def update_e(self): v = float("inf") if self.OPEN: v = min(self.g[s] + self.h(s) for s in self.OPEN) if self.INCONS: v = min(v, min(self.g[s] + self.h(s) for s in self.INCONS)) return min(self.e, self.g[self.s_goal] / v) def f_value(self, x): """ f = g + e * h f = cost-to-come + weight * cost-to-go :param x: current state :return: f_value """ return self.g[x] + self.e * self.h(x) def extract_path(self): """ Extract the path based on the PARENT set. :return: The planning path """ path = [self.s_goal] s = self.s_goal while True: s = self.PARENT[s] path.append(s) if s == self.s_start: break return list(path) def h(self, s): """ Calculate heuristic. :param s: current node (state) :return: heuristic function value """ heuristic_type = self.heuristic_type # heuristic type goal = self.s_goal # goal node if heuristic_type == "manhattan": return abs(goal[0] - s[0]) + abs(goal[1] - s[1]) else: return math.hypot(goal[0] - s[0], goal[1] - s[1]) def cost(self, s_start, s_goal): """ Calculate Cost for this motion :param s_start: starting node :param s_goal: end node :return: Cost for this motion :note: Cost function could be more complicate! """ if self.is_collision(s_start, s_goal): return math.inf return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1]) def is_collision(self, s_start, s_end): """ check if the line segment (s_start, s_end) is collision. :param s_start: start node :param s_end: end node :return: True: is collision / False: not collision """ if s_start in self.obs or s_end in self.obs: return True if s_start[0] != s_end[0] and s_start[1] != s_end[1]: if s_end[0] - s_start[0] == s_start[1] - s_end[1]: s1 = (min(s_start[0], s_end[0]), min(s_start[1], s_end[1])) s2 = (max(s_start[0], s_end[0]), max(s_start[1], s_end[1])) else: s1 = (min(s_start[0], s_end[0]), max(s_start[1], s_end[1])) s2 = (max(s_start[0], s_end[0]), min(s_start[1], s_end[1])) if s1 in self.obs or s2 in self.obs: return True return False def main(): s_start = (5, 5) s_goal = (45, 25) arastar = AraStar(s_start, s_goal, 2.5, "euclidean") plot = plotting.Plotting(s_start, s_goal) path, visited = arastar.searching() plot.animation_ara_star(path, visited, "Anytime Repairing A* (ARA*)") if __name__ == '__main__': main()