You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Information_Management_System/src/Search_2D/Bidirectional_a_star.py

230 lines
6.8 KiB

"""
Bidirectional_a_star 2D
@author: huiming zhou
"""
import os
import sys
import math
import heapq
sys.path.append(os.path.dirname(os.path.abspath(__file__)) +
"/../../Search_based_Planning/")
from Search_2D import plotting, env
class BidirectionalAStar:
def __init__(self, s_start, s_goal, heuristic_type):
self.s_start = s_start
self.s_goal = s_goal
self.heuristic_type = heuristic_type
self.Env = env.Env() # class Env
self.u_set = self.Env.motions # feasible input set
self.obs = self.Env.obs # position of obstacles
self.OPEN_fore = [] # OPEN set for forward searching
self.OPEN_back = [] # OPEN set for backward searching
self.CLOSED_fore = [] # CLOSED set for forward
self.CLOSED_back = [] # CLOSED set for backward
self.PARENT_fore = dict() # recorded parent for forward
self.PARENT_back = dict() # recorded parent for backward
self.g_fore = dict() # cost to come for forward
self.g_back = dict() # cost to come for backward
def init(self):
"""
initialize parameters
"""
self.g_fore[self.s_start] = 0.0
self.g_fore[self.s_goal] = math.inf
self.g_back[self.s_goal] = 0.0
self.g_back[self.s_start] = math.inf
self.PARENT_fore[self.s_start] = self.s_start
self.PARENT_back[self.s_goal] = self.s_goal
heapq.heappush(self.OPEN_fore,
(self.f_value_fore(self.s_start), self.s_start))
heapq.heappush(self.OPEN_back,
(self.f_value_back(self.s_goal), self.s_goal))
def searching(self):
"""
Bidirectional A*
:return: connected path, visited order of forward, visited order of backward
"""
self.init()
s_meet = self.s_start
while self.OPEN_fore and self.OPEN_back:
# solve foreward-search
_, s_fore = heapq.heappop(self.OPEN_fore)
if s_fore in self.PARENT_back:
s_meet = s_fore
break
self.CLOSED_fore.append(s_fore)
for s_n in self.get_neighbor(s_fore):
new_cost = self.g_fore[s_fore] + self.cost(s_fore, s_n)
if s_n not in self.g_fore:
self.g_fore[s_n] = math.inf
if new_cost < self.g_fore[s_n]:
self.g_fore[s_n] = new_cost
self.PARENT_fore[s_n] = s_fore
heapq.heappush(self.OPEN_fore,
(self.f_value_fore(s_n), s_n))
# solve backward-search
_, s_back = heapq.heappop(self.OPEN_back)
if s_back in self.PARENT_fore:
s_meet = s_back
break
self.CLOSED_back.append(s_back)
for s_n in self.get_neighbor(s_back):
new_cost = self.g_back[s_back] + self.cost(s_back, s_n)
if s_n not in self.g_back:
self.g_back[s_n] = math.inf
if new_cost < self.g_back[s_n]:
self.g_back[s_n] = new_cost
self.PARENT_back[s_n] = s_back
heapq.heappush(self.OPEN_back,
(self.f_value_back(s_n), s_n))
return self.extract_path(s_meet), self.CLOSED_fore, self.CLOSED_back
def get_neighbor(self, s):
"""
find neighbors of state s that not in obstacles.
:param s: state
:return: neighbors
"""
return [(s[0] + u[0], s[1] + u[1]) for u in self.u_set]
def extract_path(self, s_meet):
"""
extract path from start and goal
:param s_meet: meet point of bi-direction a*
:return: path
"""
# extract path for foreward part
path_fore = [s_meet]
s = s_meet
while True:
s = self.PARENT_fore[s]
path_fore.append(s)
if s == self.s_start:
break
# extract path for backward part
path_back = []
s = s_meet
while True:
s = self.PARENT_back[s]
path_back.append(s)
if s == self.s_goal:
break
return list(reversed(path_fore)) + list(path_back)
def f_value_fore(self, s):
"""
forward searching: f = g + h. (g: Cost to come, h: heuristic value)
:param s: current state
:return: f
"""
return self.g_fore[s] + self.h(s, self.s_goal)
def f_value_back(self, s):
"""
backward searching: f = g + h. (g: Cost to come, h: heuristic value)
:param s: current state
:return: f
"""
return self.g_back[s] + self.h(s, self.s_start)
def h(self, s, goal):
"""
Calculate heuristic value.
:param s: current node (state)
:param goal: goal node (state)
:return: heuristic value
"""
heuristic_type = self.heuristic_type
if heuristic_type == "manhattan":
return abs(goal[0] - s[0]) + abs(goal[1] - s[1])
else:
return math.hypot(goal[0] - s[0], goal[1] - s[1])
def cost(self, s_start, s_goal):
"""
Calculate Cost for this motion
:param s_start: starting node
:param s_goal: end node
:return: Cost for this motion
:note: Cost function could be more complicate!
"""
if self.is_collision(s_start, s_goal):
return math.inf
return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1])
def is_collision(self, s_start, s_end):
"""
check if the line segment (s_start, s_end) is collision.
:param s_start: start node
:param s_end: end node
:return: True: is collision / False: not collision
"""
if s_start in self.obs or s_end in self.obs:
return True
if s_start[0] != s_end[0] and s_start[1] != s_end[1]:
if s_end[0] - s_start[0] == s_start[1] - s_end[1]:
s1 = (min(s_start[0], s_end[0]), min(s_start[1], s_end[1]))
s2 = (max(s_start[0], s_end[0]), max(s_start[1], s_end[1]))
else:
s1 = (min(s_start[0], s_end[0]), max(s_start[1], s_end[1]))
s2 = (max(s_start[0], s_end[0]), min(s_start[1], s_end[1]))
if s1 in self.obs or s2 in self.obs:
return True
return False
def main():
x_start = (5, 5)
x_goal = (45, 25)
bastar = BidirectionalAStar(x_start, x_goal, "euclidean")
plot = plotting.Plotting(x_start, x_goal)
path, visited_fore, visited_back = bastar.searching()
plot.animation_bi_astar(path, visited_fore, visited_back, "Bidirectional-A*") # animation
if __name__ == '__main__':
main()