You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Information_Management_System/src/Search_2D/LPAstar.py

257 lines
7.2 KiB

"""
LPA_star 2D
@author: huiming zhou
"""
import os
import sys
import math
import matplotlib.pyplot as plt
sys.path.append(os.path.dirname(os.path.abspath(__file__)) +
"/../../Search_based_Planning/")
from Search_2D import plotting, env
class LPAStar:
def __init__(self, s_start, s_goal, heuristic_type):
self.s_start, self.s_goal = s_start, s_goal
self.heuristic_type = heuristic_type
self.Env = env.Env()
self.Plot = plotting.Plotting(self.s_start, self.s_goal)
self.u_set = self.Env.motions
self.obs = self.Env.obs
self.x = self.Env.x_range
self.y = self.Env.y_range
self.g, self.rhs, self.U = {}, {}, {}
for i in range(self.Env.x_range):
for j in range(self.Env.y_range):
self.rhs[(i, j)] = float("inf")
self.g[(i, j)] = float("inf")
self.rhs[self.s_start] = 0
self.U[self.s_start] = self.CalculateKey(self.s_start)
self.visited = set()
self.count = 0
self.fig = plt.figure()
def run(self):
self.Plot.plot_grid("Lifelong Planning A*")
self.ComputeShortestPath()
self.plot_path(self.extract_path())
self.fig.canvas.mpl_connect('button_press_event', self.on_press)
plt.show()
def on_press(self, event):
x, y = event.xdata, event.ydata
if x < 0 or x > self.x - 1 or y < 0 or y > self.y - 1:
print("Please choose right area!")
else:
x, y = int(x), int(y)
print("Change position: s =", x, ",", "y =", y)
self.visited = set()
self.count += 1
if (x, y) not in self.obs:
self.obs.add((x, y))
else:
self.obs.remove((x, y))
self.UpdateVertex((x, y))
self.Plot.update_obs(self.obs)
for s_n in self.get_neighbor((x, y)):
self.UpdateVertex(s_n)
self.ComputeShortestPath()
plt.cla()
self.Plot.plot_grid("Lifelong Planning A*")
self.plot_visited(self.visited)
self.plot_path(self.extract_path())
self.fig.canvas.draw_idle()
def ComputeShortestPath(self):
while True:
s, v = self.TopKey()
if v >= self.CalculateKey(self.s_goal) and \
self.rhs[self.s_goal] == self.g[self.s_goal]:
break
self.U.pop(s)
self.visited.add(s)
if self.g[s] > self.rhs[s]:
# Condition: over-consistent (eg: deleted obstacles)
# So, rhs[s] decreased -- > rhs[s] < g[s]
self.g[s] = self.rhs[s]
else:
# Condition: # under-consistent (eg: added obstacles)
# So, rhs[s] increased --> rhs[s] > g[s]
self.g[s] = float("inf")
self.UpdateVertex(s)
for s_n in self.get_neighbor(s):
self.UpdateVertex(s_n)
def UpdateVertex(self, s):
"""
update the status and the current cost to come of state s.
:param s: state s
"""
if s != self.s_start:
# Condition: cost of parent of s changed
# Since we do not record the children of a state, we need to enumerate its neighbors
self.rhs[s] = min(self.g[s_n] + self.cost(s_n, s)
for s_n in self.get_neighbor(s))
if s in self.U:
self.U.pop(s)
if self.g[s] != self.rhs[s]:
# Condition: current cost to come is different to that of last time
# state s should be added into OPEN set (set U)
self.U[s] = self.CalculateKey(s)
def TopKey(self):
"""
:return: return the min key and its value.
"""
s = min(self.U, key=self.U.get)
return s, self.U[s]
def CalculateKey(self, s):
return [min(self.g[s], self.rhs[s]) + self.h(s),
min(self.g[s], self.rhs[s])]
def get_neighbor(self, s):
"""
find neighbors of state s that not in obstacles.
:param s: state
:return: neighbors
"""
s_list = set()
for u in self.u_set:
s_next = tuple([s[i] + u[i] for i in range(2)])
if s_next not in self.obs:
s_list.add(s_next)
return s_list
def h(self, s):
"""
Calculate heuristic.
:param s: current node (state)
:return: heuristic function value
"""
heuristic_type = self.heuristic_type # heuristic type
goal = self.s_goal # goal node
if heuristic_type == "manhattan":
return abs(goal[0] - s[0]) + abs(goal[1] - s[1])
else:
return math.hypot(goal[0] - s[0], goal[1] - s[1])
def cost(self, s_start, s_goal):
"""
Calculate Cost for this motion
:param s_start: starting node
:param s_goal: end node
:return: Cost for this motion
:note: Cost function could be more complicate!
"""
if self.is_collision(s_start, s_goal):
return float("inf")
return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1])
def is_collision(self, s_start, s_end):
if s_start in self.obs or s_end in self.obs:
return True
if s_start[0] != s_end[0] and s_start[1] != s_end[1]:
if s_end[0] - s_start[0] == s_start[1] - s_end[1]:
s1 = (min(s_start[0], s_end[0]), min(s_start[1], s_end[1]))
s2 = (max(s_start[0], s_end[0]), max(s_start[1], s_end[1]))
else:
s1 = (min(s_start[0], s_end[0]), max(s_start[1], s_end[1]))
s2 = (max(s_start[0], s_end[0]), min(s_start[1], s_end[1]))
if s1 in self.obs or s2 in self.obs:
return True
return False
def extract_path(self):
"""
Extract the path based on the PARENT set.
:return: The planning path
"""
path = [self.s_goal]
s = self.s_goal
for k in range(100):
g_list = {}
for x in self.get_neighbor(s):
if not self.is_collision(s, x):
g_list[x] = self.g[x]
s = min(g_list, key=g_list.get)
path.append(s)
if s == self.s_start:
break
return list(reversed(path))
def plot_path(self, path):
px = [x[0] for x in path]
py = [x[1] for x in path]
plt.plot(px, py, linewidth=2)
plt.plot(self.s_start[0], self.s_start[1], "bs")
plt.plot(self.s_goal[0], self.s_goal[1], "gs")
def plot_visited(self, visited):
color = ['gainsboro', 'lightgray', 'silver', 'darkgray',
'bisque', 'navajowhite', 'moccasin', 'wheat',
'powderblue', 'skyblue', 'lightskyblue', 'cornflowerblue']
if self.count >= len(color) - 1:
self.count = 0
for x in visited:
plt.plot(x[0], x[1], marker='s', color=color[self.count])
def main():
x_start = (5, 5)
x_goal = (45, 25)
lpastar = LPAStar(x_start, x_goal, "Euclidean")
lpastar.run()
if __name__ == '__main__':
main()