#include #include #include #include typedef struct { int* values; int* rowIndex; int* colIndex; int nonZeroCount; } SparseMatrix; void sparseMatmul(SparseMatrix* A, SparseMatrix* B, SparseMatrix* C) { int currentIndex = 0; int i, j; for (i = 0; i < A->nonZeroCount; i++) { int rowA = A->rowIndex[i]; int colA = A->colIndex[i]; float valueA = A->values[i]; for (j = 0; j < A->nonZeroCount; j++) { int rowB = B->rowIndex[j]; int colB = B->colIndex[j]; float valueB = B->values[j]; if (colA == rowB) { float product = valueA * valueB; int found = 0; int k; for (k = 0; k < currentIndex; k++) { if (C->rowIndex[k] == rowA && C->colIndex[k] == colB){ C->values[k] += product; found = 1; break; } } if (!found) { C->values[currentIndex] = product; C->rowIndex[currentIndex] = rowA; C->colIndex[currentIndex] = colB; currentIndex++; } } } } C->nonZeroCount = currentIndex; } void generate(SparseMatrix* matrix, int rows, int cols, int nonZeroCount){ matrix->values = (int*)malloc(sizeof(int) * nonZeroCount); matrix->rowIndex = (int*)malloc(sizeof(int) * nonZeroCount); matrix->colIndex = (int*)malloc(sizeof(int) * nonZeroCount); matrix->nonZeroCount = nonZeroCount; int i; for (i = 0; i < nonZeroCount; i++) { matrix->rowIndex[i] = rand() % rows; matrix->colIndex[i] = rand() % cols; matrix->values[i] = rand() %100; } } void matmulNEON(float** A, float** B, float** C, int n) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { float32x4_t vecC = vmovq_n_f32(0); for (int k = 0; k < n; k += 4) { float32x4_t vecA = vld1q_f32(&A[i][k]); float32x4_t vecB = vld1q_f32(&B[k][j]); vecC = vmlaq_f32(vecC, vecA, vecB); } C[i][j] = vgetq_lane_f32(vecC, 0) + vgetq_lane_f32(vecC, 1) + vgetq_lane_f32(vecC, 2) + vgetq_lane_f32(vecC, 3); } } } void free_matrix(SparseMatrix* matrix) { free(matrix->values); free(matrix->rowIndex); free(matrix->colIndex); } int main() { srand(time(NULL)); // int i; int rowsA = 1000; int rowsB = 2000; int colsB = 1000; int nonZeroCountA = 10000; int nonZeroCountB = 10000; SparseMatrix A, B; generate(&A, rowsA, rowsB, nonZeroCountA); generate(&B, rowsB, colsB, nonZeroCountB); // for (i = 0; i < A.nonZeroCount; ++i) { // printf("A[%d][%d] = %d\n", A.rowIndex[i], A.colIndex[i], A.values[i]); // } // for (i = 0; i < B.nonZeroCount; ++i) { // printf("B[%d][%d] = %d\n", B.rowIndex[i], B.colIndex[i], B.values[i]); // } int i; float** matrixA = (float**)malloc(rowsA * rowsB * sizeof(float*)); float** matrixB = (float**)malloc(rowsB * colsB * sizeof(float*)); float** matrixC = (float**)malloc(rowsA * colsB * sizeof(float*)); for (i = 0; i < nonZeroCountA; i++) { int row = A.rowIndex[i]; int col = A.colIndex[i]; matrixA[row][col] = A.values[i]; } for (i = 0; i < nonZeroCountB; i++) { int row = B.rowIndex[i]; int col = B.colIndex[i]; matrixA[row][col] = B.values[i]; } SparseMatrix C; C.values = (int*)malloc(A.nonZeroCount * B.nonZeroCount * sizeof(int)); C.rowIndex = (int*)malloc(A.nonZeroCount * B.nonZeroCount * sizeof(int)); C.colIndex = (int*)malloc(A.nonZeroCount * B.nonZeroCount * sizeof(int)); C.nonZeroCount = 0; clock_t start_time1 = clock(); sparseMatmul(&A, &B, &C); clock_t end_time1 = clock(); double time1 = (double)(end_time1 - start_time1) / CLOCKS_PER_SEC; printf("sparseMatrix %f\n", time1); clock_t start_time2 = clock(); matmulNEON(matrixA, matrixB, matrixC, rowsA * colsB) clock_t end_time2 = clock(); double time2 = (double)(end_time2 - start_time2) / CLOCKS_PER_SEC; printf("sparseMatrix %f\n", time2); // for (i = 0; i < C.nonZeroCount; ++i) { // printf("C[%d][%d] = %d\n", C.rowIndex[i], C.colIndex[i], C.values[i]); // } free_matrix(&A); free_matrix(&B); free_matrix(&C); return 0; }