|
|
|
import warnings
|
|
|
|
import threading
|
|
|
|
import cv2
|
|
|
|
import mediapipe as mp
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.keras.models import load_model
|
|
|
|
from tkinter import Tk, Canvas, Button, Label, LEFT, RIGHT, NW
|
|
|
|
from PIL import Image, ImageTk
|
|
|
|
import os
|
|
|
|
|
|
|
|
# 设置环境变量以关闭oneDNN自定义操作
|
|
|
|
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
|
|
|
|
|
|
|
warnings.filterwarnings("ignore", category=UserWarning, message='SymbolDatabase.GetPrototype() is deprecated')
|
|
|
|
|
|
|
|
# 初始化全局变量
|
|
|
|
hands = None
|
|
|
|
mp_draw = mp.solutions.drawing_utils
|
|
|
|
cap = None
|
|
|
|
keep_running = False
|
|
|
|
paused = False
|
|
|
|
popup_open = False # 用于标记当前是否有弹窗打开
|
|
|
|
|
|
|
|
# 模型路径和加载
|
|
|
|
model_path = 'D:/hand/hand_gesture_model.h5'
|
|
|
|
model = load_model(model_path)
|
|
|
|
|
|
|
|
gesture_classes = ['00', '01', '02', '03', '04', '05', '06', '07', '08', '09']
|
|
|
|
|
|
|
|
def start_recognition(root, callback=None):
|
|
|
|
global keep_running, cap, hands
|
|
|
|
if cap is None or not cap.isOpened():
|
|
|
|
cap = cv2.VideoCapture(0)
|
|
|
|
if hands is None:
|
|
|
|
hands = mp.solutions.hands.Hands(static_image_mode=False, max_num_hands=2,
|
|
|
|
model_complexity=1, min_detection_confidence=0.5,
|
|
|
|
min_tracking_confidence=0.5)
|
|
|
|
keep_running = True
|
|
|
|
threading.Thread(target=run_recognition, args=(root, callback)).start()
|
|
|
|
|
|
|
|
def run_recognition(root, callback=None):
|
|
|
|
global keep_running, paused
|
|
|
|
|
|
|
|
while keep_running and cap.isOpened():
|
|
|
|
ret, img = cap.read()
|
|
|
|
if not ret:
|
|
|
|
break
|
|
|
|
|
|
|
|
img = cv2.flip(img, 1)
|
|
|
|
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
if not paused:
|
|
|
|
results = hands.process(img_rgb)
|
|
|
|
total_raised_fingers = 0
|
|
|
|
|
|
|
|
if results.multi_hand_landmarks:
|
|
|
|
for handLms in results.multi_hand_landmarks:
|
|
|
|
mp_draw.draw_landmarks(img_rgb, handLms, mp.solutions.hands.HAND_CONNECTIONS)
|
|
|
|
gesture, raised_fingers = detect_gesture_and_fingers(handLms)
|
|
|
|
total_raised_fingers += raised_fingers
|
|
|
|
|
|
|
|
if total_raised_fingers > 0:
|
|
|
|
handle_finger_detection(total_raised_fingers)
|
|
|
|
|
|
|
|
cv2.putText(img_rgb, f'Total Raised Fingers: {total_raised_fingers}', (10, 30),
|
|
|
|
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2, cv2.LINE_AA)
|
|
|
|
|
|
|
|
if callback:
|
|
|
|
root.after(0, callback, img_rgb)
|
|
|
|
|
|
|
|
def stop_recognition():
|
|
|
|
global keep_running, cap
|
|
|
|
keep_running = False
|
|
|
|
if cap is not None and cap.isOpened():
|
|
|
|
cap.release()
|
|
|
|
cap = None
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
|
|
def release_camera():
|
|
|
|
global cap
|
|
|
|
if cap is not None and cap.isOpened():
|
|
|
|
cap.release()
|
|
|
|
cap = None
|
|
|
|
|
|
|
|
def detect_gesture_and_fingers(hand_landmarks):
|
|
|
|
gesture_image = get_hand_image(hand_landmarks)
|
|
|
|
gesture = predict_gesture(gesture_image)
|
|
|
|
|
|
|
|
raised_fingers = count_raised_fingers(hand_landmarks)
|
|
|
|
|
|
|
|
return gesture, raised_fingers
|
|
|
|
|
|
|
|
def get_hand_image(hand_landmarks):
|
|
|
|
img = np.zeros((150, 150, 3), dtype=np.uint8)
|
|
|
|
return img
|
|
|
|
|
|
|
|
def predict_gesture(img):
|
|
|
|
img = cv2.resize(img, (150, 150))
|
|
|
|
img_array = np.expand_dims(img, axis=0) / 255.0
|
|
|
|
predictions = model.predict(img_array)
|
|
|
|
predicted_class = gesture_classes[np.argmax(predictions)]
|
|
|
|
return predicted_class
|
|
|
|
|
|
|
|
def count_raised_fingers(hand_landmarks):
|
|
|
|
fingers_status = [0, 0, 0, 0, 0]
|
|
|
|
|
|
|
|
thumb_tip = hand_landmarks.landmark[mp.solutions.hands.HandLandmark.THUMB_TIP]
|
|
|
|
thumb_ip = hand_landmarks.landmark[mp.solutions.hands.HandLandmark.THUMB_IP]
|
|
|
|
thumb_mcp = hand_landmarks.landmark[mp.solutions.hands.HandLandmark.THUMB_MCP]
|
|
|
|
thumb_cmc = hand_landmarks.landmark[mp.solutions.hands.HandLandmark.THUMB_CMC]
|
|
|
|
|
|
|
|
angle_thumb = calculate_angle(thumb_cmc, thumb_mcp, thumb_tip)
|
|
|
|
if angle_thumb > 160:
|
|
|
|
fingers_status[0] = 1
|
|
|
|
|
|
|
|
for i, finger_tip_id in enumerate([mp.solutions.hands.HandLandmark.INDEX_FINGER_TIP,
|
|
|
|
mp.solutions.hands.HandLandmark.MIDDLE_FINGER_TIP,
|
|
|
|
mp.solutions.hands.HandLandmark.RING_FINGER_TIP,
|
|
|
|
mp.solutions.hands.HandLandmark.PINKY_TIP]):
|
|
|
|
finger_tip = hand_landmarks.landmark[finger_tip_id]
|
|
|
|
finger_pip = hand_landmarks.landmark[finger_tip_id - 2]
|
|
|
|
finger_mcp = hand_landmarks.landmark[finger_tip_id - 3]
|
|
|
|
|
|
|
|
angle_finger = calculate_angle(finger_mcp, finger_pip, finger_tip)
|
|
|
|
if angle_finger > 160:
|
|
|
|
fingers_status[i + 1] = 1
|
|
|
|
|
|
|
|
return sum(fingers_status)
|
|
|
|
|
|
|
|
def calculate_angle(point1, point2, point3):
|
|
|
|
angle = np.arctan2(point3.y - point2.y, point3.x - point2.x) - np.arctan2(point1.y - point2.y, point1.x - point2.x)
|
|
|
|
angle = np.abs(angle)
|
|
|
|
if angle > np.pi:
|
|
|
|
angle = 2 * np.pi - angle
|
|
|
|
return angle * 180 / np.pi
|
|
|
|
|
|
|
|
def handle_finger_detection(finger_count):
|
|
|
|
global paused, popup_open
|
|
|
|
if not popup_open:
|
|
|
|
if finger_count == 5:
|
|
|
|
paused = True
|
|
|
|
popup_open = True
|
|
|
|
show_stop_recognition_window()
|
|
|
|
# if finger_count == 1:
|
|
|
|
# paused = True
|
|
|
|
# popup_open = True
|
|
|
|
# show_stop_recognition_window()
|
|
|
|
# if finger_count == 1:
|
|
|
|
# paused = True
|
|
|
|
# popup_open = True
|
|
|
|
# show_stop_recognition_window()
|
|
|
|
# if finger_count == 1:
|
|
|
|
# paused = True
|
|
|
|
# popup_open = True
|
|
|
|
# show_stop_recognition_window()
|
|
|
|
# if finger_count == 1:
|
|
|
|
# paused = True
|
|
|
|
# popup_open = True
|
|
|
|
# show_stop_recognition_window()
|
|
|
|
|
|
|
|
def show_finger_window(message):
|
|
|
|
def on_continue():
|
|
|
|
global paused, popup_open
|
|
|
|
paused = False
|
|
|
|
popup_open = False # 关闭弹窗后将标志设置为False
|
|
|
|
finger_window.destroy()
|
|
|
|
start_recognition(show_frame)
|
|
|
|
|
|
|
|
finger_window = Tk()
|
|
|
|
finger_window.title("手指检测")
|
|
|
|
|
|
|
|
label = Label(finger_window, text=message, font=('Helvetica', 24, 'bold'))
|
|
|
|
label.pack(pady=20)
|
|
|
|
|
|
|
|
continue_button = Button(finger_window, text="继续识别", command=on_continue)
|
|
|
|
continue_button.pack(pady=10)
|
|
|
|
|
|
|
|
finger_window.protocol("WM_DELETE_WINDOW", on_continue)
|
|
|
|
finger_window.mainloop()
|
|
|
|
|
|
|
|
def show_stop_recognition_window():
|
|
|
|
def on_continue():
|
|
|
|
global paused, popup_open
|
|
|
|
paused = False
|
|
|
|
popup_open = False # 关闭弹窗后将标志设置为False
|
|
|
|
stop_window.destroy()
|
|
|
|
start_recognition(show_frame)
|
|
|
|
|
|
|
|
def on_stop():
|
|
|
|
global popup_open
|
|
|
|
stop_recognition()
|
|
|
|
popup_open = False # 关闭弹窗后将标志设置为False
|
|
|
|
stop_window.destroy()
|
|
|
|
|
|
|
|
stop_window = Tk()
|
|
|
|
stop_window.title("停止识别")
|
|
|
|
|
|
|
|
label = Label(stop_window, text="您竖起了五根手指,是否停止识别?", font=('Helvetica', 24, 'bold'))
|
|
|
|
label.pack(pady=20)
|
|
|
|
|
|
|
|
continue_button = Button(stop_window, text="继续识别", command=on_continue)
|
|
|
|
continue_button.pack(side=LEFT, padx=10, pady=10)
|
|
|
|
|
|
|
|
stop_button = Button(stop_window, text="停止识别", command=on_stop)
|
|
|
|
stop_button.pack(side=RIGHT, padx=10, pady=10)
|
|
|
|
|
|
|
|
stop_window.protocol("WM_DELETE_WINDOW", on_continue)
|
|
|
|
stop_window.mainloop()
|
|
|
|
|
|
|
|
def show_frame(img=None):
|
|
|
|
global paused, canvas
|
|
|
|
if keep_running and cap.isOpened():
|
|
|
|
if img is not None:
|
|
|
|
frame_rgb = img
|
|
|
|
else:
|
|
|
|
ret, frame = cap.read()
|
|
|
|
if not ret:
|
|
|
|
return
|
|
|
|
|
|
|
|
frame = cv2.flip(frame, 1)
|
|
|
|
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
img = Image.fromarray(frame_rgb)
|
|
|
|
imgtk = ImageTk.PhotoImage(image=img)
|
|
|
|
canvas.create_image(0, 0, anchor=NW, image=imgtk)
|
|
|
|
canvas.image = imgtk
|
|
|
|
|
|
|
|
if not paused:
|
|
|
|
root.after(10, show_frame)
|
|
|
|
else:
|
|
|
|
root.update_idletasks()
|
|
|
|
root.update()
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
root = Tk()
|
|
|
|
root.title("手势识别")
|
|
|
|
|
|
|
|
canvas = Canvas(root, width=640, height=480)
|
|
|
|
canvas.pack()
|
|
|
|
|
|
|
|
start_button = Button(root, text="开始识别", command=lambda: start_recognition(show_frame))
|
|
|
|
start_button.pack(side=LEFT, padx=10, pady=10)
|
|
|
|
|
|
|
|
stop_button = Button(root, text="停止识别", command=stop_recognition)
|
|
|
|
stop_button.pack(side=RIGHT, padx=10, pady=10)
|
|
|
|
|
|
|
|
root.mainloop()
|