import warnings import threading import cv2 import mediapipe as mp import numpy as np from tensorflow.keras.models import load_model from tkinter import Tk, Canvas, Button, Label, LEFT, RIGHT, NW from PIL import Image, ImageTk import os # 设置环境变量以关闭oneDNN自定义操作 os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' warnings.filterwarnings("ignore", category=UserWarning, message='SymbolDatabase.GetPrototype() is deprecated') # 初始化全局变量 hands = None mp_draw = mp.solutions.drawing_utils cap = None keep_running = False paused = False popup_open = False # 用于标记当前是否有弹窗打开 # 模型路径和加载 model_path = 'D:/hand/hand_gesture_model.h5' model = load_model(model_path) gesture_classes = ['00', '01', '02', '03', '04', '05', '06', '07', '08', '09'] def start_recognition(root, callback=None): global keep_running, cap, hands if cap is None or not cap.isOpened(): cap = cv2.VideoCapture(0) if hands is None: hands = mp.solutions.hands.Hands(static_image_mode=False, max_num_hands=2, model_complexity=1, min_detection_confidence=0.5, min_tracking_confidence=0.5) keep_running = True threading.Thread(target=run_recognition, args=(root, callback)).start() def run_recognition(root, callback=None): global keep_running, paused while keep_running and cap.isOpened(): ret, img = cap.read() if not ret: break img = cv2.flip(img, 1) img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) if not paused: results = hands.process(img_rgb) total_raised_fingers = 0 if results.multi_hand_landmarks: for handLms in results.multi_hand_landmarks: mp_draw.draw_landmarks(img_rgb, handLms, mp.solutions.hands.HAND_CONNECTIONS) gesture, raised_fingers = detect_gesture_and_fingers(handLms) total_raised_fingers += raised_fingers if total_raised_fingers > 0: handle_finger_detection(total_raised_fingers) cv2.putText(img_rgb, f'Total Raised Fingers: {total_raised_fingers}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2, cv2.LINE_AA) if callback: root.after(0, callback, img_rgb) def stop_recognition(): global keep_running, cap keep_running = False if cap is not None and cap.isOpened(): cap.release() cap = None cv2.destroyAllWindows() def release_camera(): global cap if cap is not None and cap.isOpened(): cap.release() cap = None def detect_gesture_and_fingers(hand_landmarks): gesture_image = get_hand_image(hand_landmarks) gesture = predict_gesture(gesture_image) raised_fingers = count_raised_fingers(hand_landmarks) return gesture, raised_fingers def get_hand_image(hand_landmarks): img = np.zeros((150, 150, 3), dtype=np.uint8) return img def predict_gesture(img): img = cv2.resize(img, (150, 150)) img_array = np.expand_dims(img, axis=0) / 255.0 predictions = model.predict(img_array) predicted_class = gesture_classes[np.argmax(predictions)] return predicted_class def count_raised_fingers(hand_landmarks): fingers_status = [0, 0, 0, 0, 0] thumb_tip = hand_landmarks.landmark[mp.solutions.hands.HandLandmark.THUMB_TIP] thumb_ip = hand_landmarks.landmark[mp.solutions.hands.HandLandmark.THUMB_IP] thumb_mcp = hand_landmarks.landmark[mp.solutions.hands.HandLandmark.THUMB_MCP] thumb_cmc = hand_landmarks.landmark[mp.solutions.hands.HandLandmark.THUMB_CMC] angle_thumb = calculate_angle(thumb_cmc, thumb_mcp, thumb_tip) if angle_thumb > 160: fingers_status[0] = 1 for i, finger_tip_id in enumerate([mp.solutions.hands.HandLandmark.INDEX_FINGER_TIP, mp.solutions.hands.HandLandmark.MIDDLE_FINGER_TIP, mp.solutions.hands.HandLandmark.RING_FINGER_TIP, mp.solutions.hands.HandLandmark.PINKY_TIP]): finger_tip = hand_landmarks.landmark[finger_tip_id] finger_pip = hand_landmarks.landmark[finger_tip_id - 2] finger_mcp = hand_landmarks.landmark[finger_tip_id - 3] angle_finger = calculate_angle(finger_mcp, finger_pip, finger_tip) if angle_finger > 160: fingers_status[i + 1] = 1 return sum(fingers_status) def calculate_angle(point1, point2, point3): angle = np.arctan2(point3.y - point2.y, point3.x - point2.x) - np.arctan2(point1.y - point2.y, point1.x - point2.x) angle = np.abs(angle) if angle > np.pi: angle = 2 * np.pi - angle return angle * 180 / np.pi def handle_finger_detection(finger_count): global paused, popup_open if not popup_open: if finger_count == 5: paused = True popup_open = True show_stop_recognition_window() # if finger_count == 1: # paused = True # popup_open = True # show_stop_recognition_window() # if finger_count == 1: # paused = True # popup_open = True # show_stop_recognition_window() # if finger_count == 1: # paused = True # popup_open = True # show_stop_recognition_window() # if finger_count == 1: # paused = True # popup_open = True # show_stop_recognition_window() def show_finger_window(message): def on_continue(): global paused, popup_open paused = False popup_open = False # 关闭弹窗后将标志设置为False finger_window.destroy() start_recognition(show_frame) finger_window = Tk() finger_window.title("手指检测") label = Label(finger_window, text=message, font=('Helvetica', 24, 'bold')) label.pack(pady=20) continue_button = Button(finger_window, text="继续识别", command=on_continue) continue_button.pack(pady=10) finger_window.protocol("WM_DELETE_WINDOW", on_continue) finger_window.mainloop() def show_stop_recognition_window(): def on_continue(): global paused, popup_open paused = False popup_open = False # 关闭弹窗后将标志设置为False stop_window.destroy() start_recognition(show_frame) def on_stop(): global popup_open stop_recognition() popup_open = False # 关闭弹窗后将标志设置为False stop_window.destroy() stop_window = Tk() stop_window.title("停止识别") label = Label(stop_window, text="您竖起了五根手指,是否停止识别?", font=('Helvetica', 24, 'bold')) label.pack(pady=20) continue_button = Button(stop_window, text="继续识别", command=on_continue) continue_button.pack(side=LEFT, padx=10, pady=10) stop_button = Button(stop_window, text="停止识别", command=on_stop) stop_button.pack(side=RIGHT, padx=10, pady=10) stop_window.protocol("WM_DELETE_WINDOW", on_continue) stop_window.mainloop() def show_frame(img=None): global paused, canvas if keep_running and cap.isOpened(): if img is not None: frame_rgb = img else: ret, frame = cap.read() if not ret: return frame = cv2.flip(frame, 1) frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) img = Image.fromarray(frame_rgb) imgtk = ImageTk.PhotoImage(image=img) canvas.create_image(0, 0, anchor=NW, image=imgtk) canvas.image = imgtk if not paused: root.after(10, show_frame) else: root.update_idletasks() root.update() if __name__ == "__main__": root = Tk() root.title("手势识别") canvas = Canvas(root, width=640, height=480) canvas.pack() start_button = Button(root, text="开始识别", command=lambda: start_recognition(show_frame)) start_button.pack(side=LEFT, padx=10, pady=10) stop_button = Button(root, text="停止识别", command=stop_recognition) stop_button.pack(side=RIGHT, padx=10, pady=10) root.mainloop()