import warnings import threading #导入多线程模块 import cv2 import mediapipe as mp import numpy as np from tensorflow.keras.models import load_model # 禁用特定警告 warnings.filterwarnings("ignore", category=UserWarning, message='SymbolDatabase.GetPrototype() is deprecated') # 初始化 MediaPipe 和 OpenCV hands = None mp_draw = mp.solutions.drawing_utils cap = None keep_running = False # 加载手势识别模型 model_path = 'D:/hand/hand_gesture_model.h5' model = load_model(model_path) # 定义手势类别 gesture_classes = ['00', '01', '02', '03', '04', '05', '06', '07', '08', '09'] def start_recognition(callback=None): global keep_running, cap, hands if cap is None or not cap.isOpened(): cap = cv2.VideoCapture(0) if hands is None: hands = mp.solutions.hands.Hands(static_image_mode=False, max_num_hands=2, model_complexity=1, min_detection_confidence=0.5, min_tracking_confidence=0.5) keep_running = True threading.Thread(target=run_recognition, args=(callback,)).start() def run_recognition(callback=None): global keep_running last_gesture = None while keep_running and cap.isOpened(): ret, img = cap.read() if not ret: break img = cv2.flip(img, 1) img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) results = hands.process(img_rgb) total_raised_fingers = 0 if results.multi_hand_landmarks: for handLms in results.multi_hand_landmarks: mp_draw.draw_landmarks(img, handLms, mp.solutions.hands.HAND_CONNECTIONS) _, raised_fingers = detect_gesture_and_fingers(handLms) total_raised_fingers += raised_fingers cv2.putText(img, f'Total Raised Fingers: {total_raised_fingers}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2, cv2.LINE_AA,) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) if callback: callback(img) stop_recognition() #停止识别 def stop_recognition(): global keep_running, cap keep_running = False if cap is not None and cap.isOpened(): cap.release() cap = None cv2.destroyAllWindows() #释放摄像头资源 def release_camera(): global cap if cap is not None and cap.isOpened(): cap.release() cap = None def detect_gesture_and_fingers(hand_landmarks): # 手势识别 gesture_image = get_hand_image(hand_landmarks) gesture = predict_gesture(gesture_image) # 手指竖起数量检测 raised_fingers = count_raised_fingers(hand_landmarks) return gesture, raised_fingers def get_hand_image(hand_landmarks): # 提取手部区域图像 # 示例实现,请根据你的需要进行调整 img = np.zeros((150, 150, 3), dtype=np.uint8) # 示例图像 return img def predict_gesture(img): img = cv2.resize(img, (150, 150)) img_array = np.expand_dims(img, axis=0) / 255.0 predictions = model.predict(img_array) predicted_class = gesture_classes[np.argmax(predictions)] return predicted_class def count_raised_fingers(hand_landmarks): fingers_status = [0, 0, 0, 0, 0] # 拇指 thumb_tip = hand_landmarks.landmark[mp.solutions.hands.HandLandmark.THUMB_TIP] thumb_ip = hand_landmarks.landmark[mp.solutions.hands.HandLandmark.THUMB_IP] thumb_mcp = hand_landmarks.landmark[mp.solutions.hands.HandLandmark.THUMB_MCP] thumb_cmc = hand_landmarks.landmark[mp.solutions.hands.HandLandmark.THUMB_CMC] # 计算拇指的角度 angle_thumb = calculate_angle(thumb_cmc, thumb_mcp, thumb_tip) if angle_thumb > 160: # 如果拇指的角度大于160度,认为拇指竖起 fingers_status[0] = 1 # 其他手指 for i, finger_tip_id in enumerate([mp.solutions.hands.HandLandmark.INDEX_FINGER_TIP, mp.solutions.hands.HandLandmark.MIDDLE_FINGER_TIP, mp.solutions.hands.HandLandmark.RING_FINGER_TIP, mp.solutions.hands.HandLandmark.PINKY_TIP]): finger_tip = hand_landmarks.landmark[finger_tip_id] finger_pip = hand_landmarks.landmark[finger_tip_id - 2] finger_mcp = hand_landmarks.landmark[finger_tip_id - 3] # 计算手指的角度 angle_finger = calculate_angle(finger_mcp, finger_pip, finger_tip) if angle_finger > 160: # 如果手指的角度大于160度,认为手指竖起 fingers_status[i + 1] = 1 return sum(fingers_status) def calculate_angle(point1, point2, point3): # 计算三个点之间的角度 angle = np.arctan2(point3.y - point2.y, point3.x - point2.x) - np.arctan2(point1.y - point2.y, point1.x - point2.x) angle = np.abs(angle) if angle > np.pi: angle = 2 * np.pi - angle return angle * 180 / np.pi