master
li.chengmeng 3 years ago
parent 6061e80829
commit 53c9df6124

@ -1,5 +1,8 @@
import os
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow import keras
import numpy as np
config = tf.compat.v1.ConfigProto(gpu_options=tf.compat.v1.GPUOptions(allow_growth=True))
sess = tf.compat.v1.Session(config=config)
@ -19,13 +22,39 @@ model.add(keras.layers.MaxPooling2D(2,2))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(128, activation = tf.nn.relu))
model.add(keras.layers.Dense(36, activation = tf.nn.softmax))
model.add(keras.layers.Dense(10, activation = tf.nn.softmax))
checkpoint_path = "training_1/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
save_weights_only=True,
verbose=1)
train_images_scaled = train_images/255
model.compile(optimizer = 'adam', loss = tf.losses.sparse_categorical_crossentropy, metrics = ['accuracy'])
history = model.fit(train_images_scaled.reshape(-1, 28, 28 ,1), train_labels, epochs = 8)
history = model.fit(
train_images_scaled.reshape(-1, 28, 28 ,1),
train_labels,
epochs = 8,
validation_data=(test_images.reshape(-1, 28, 28 ,1), test_labels),
callbacks=[cp_callback]
)
results = model.evaluate(test_images.reshape(-1, 28, 28 ,1), test_labels)
testShow = test_labels[:100]
pred = model.predict(test_images.reshape(-1, 28, 28 ,1))
predict = []
for item in pred:
predict.append(np.argmax(item))
plt.figure()
plt.title('Conv Predict')
plt.ylabel('number')
plt.plot( range( testShow.size ), predict[:100], label='predict')
plt.plot( range( testShow.size ), testShow, label='result')
plt.legend()
plt.show()

Binary file not shown.
Loading…
Cancel
Save