训练与预测分离,加入断点训练

master
li.chengmeng 3 years ago
parent 9c479b9e84
commit d56568b5d1

Binary file not shown.

@ -4,13 +4,13 @@ import matplotlib.pyplot as plt
from tensorflow.keras.models import load_model
import numpy as np
# 模型路径
model_path = "./myModel/myModel.h5"
# 抑制tensorflow以防显存占用过多报错
config = tf.compat.v1.ConfigProto(gpu_options=tf.compat.v1.GPUOptions(allow_growth=True))
sess = tf.compat.v1.Session(config=config)
checkpoint_path = "./training_2/cp.ckpt"
model_path = "./myModel/myModel.h5"
# 读取手写数字数据集
num_mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = num_mnist.load_data()
@ -25,7 +25,8 @@ model.summary()
model.evaluate(test_images.reshape(-1, 28, 28, 1), test_labels)
# 可视化预测效果
testShow = test_labels[:100]
show_num = 300
testShow = test_labels[:show_num]
pred = model.predict(test_images.reshape(-1, 28, 28, 1))
predict = []
@ -35,7 +36,7 @@ for item in pred:
plt.figure()
plt.title('Conv Predict')
plt.ylabel('number')
plt.plot(range(testShow.size), predict[:100], label='predict')
plt.plot(range(testShow.size), predict[:show_num], label='predict')
plt.plot(range(testShow.size), testShow, label='result')
plt.legend()
plt.show()

@ -3,22 +3,27 @@ import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow import keras
import numpy as np
import shutil
# 检查点路径与模型保存路径
checkpoint_path = "./checkpoint/cp.ckpt"
model_path = "./myModel/myModel.h5"
checkpoint_dir = os.path.dirname(checkpoint_path)
model_dir = os.path.dirname(model_path)
# 抑制tensorflow以防显存占用过多报错
config = tf.compat.v1.ConfigProto(gpu_options=tf.compat.v1.GPUOptions(allow_growth=True))
sess = tf.compat.v1.Session(config=config)
# 读取手写数字数据集
num_mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = num_mnist.load_data()
# 打印shape
print(train_images.shape)
print(train_labels.shape)
print(test_images.shape)
print(test_labels.shape)
# 图片归一化处理
train_images_scaled = train_images / 255
# 构建网络 开始
'''
卷积 池化 卷积 池化 全连接 全连接
卷积 池化 卷积 池化 全连接 全连接
'''
model = keras.Sequential()
model.add(keras.layers.Conv2D(8, (3, 3), activation='relu', input_shape=(28, 28, 1)))
@ -37,16 +42,14 @@ model.compile(optimizer='adam', loss=tf.losses.sparse_categorical_crossentropy,
model.summary()
# 回调函数,用于训练中保存模型
checkpoint_path = "./training_2/cp.ckpt"
model_path = "./myModel/myModel.h5"
checkpoint_dir = os.path.dirname(checkpoint_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
#save_weights_only=True,
save_weights_only=True,
verbose=1)
# 图片归一化处理
train_images_scaled = train_images / 255
# 发现检查点中存在保存的模型权值,则认为上次训练被中断,读取权值继续训练
if (os.path.exists(checkpoint_dir)):
print('检测到未完成的训练,已读取检查点权值继续训练')
model.load_weights(checkpoint_path)
# 训练
history = model.fit(
@ -57,24 +60,12 @@ history = model.fit(
callbacks=[cp_callback]
)
#保存模型
# 保存模型
model.save(model_path)
# 删除检查点文件
shutil.rmtree(checkpoint_dir)
print("已删除检查点文件")
# 评估
results = model.evaluate(test_images.reshape(-1, 28, 28, 1), test_labels)
# 可视化预测效果
testShow = test_labels[:100]
pred = model.predict(test_images.reshape(-1, 28, 28, 1))
predict = []
for item in pred:
predict.append(np.argmax(item))
plt.figure()
plt.title('Conv Predict')
plt.ylabel('number')
plt.plot(range(testShow.size), predict[:100], label='predict')
plt.plot(range(testShow.size), testShow, label='result')
plt.legend()
plt.show()

@ -1,2 +0,0 @@
model_checkpoint_path: "cp.ckpt"
all_model_checkpoint_paths: "cp.ckpt"

Binary file not shown.

Binary file not shown.
Loading…
Cancel
Save