You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

59 lines
1.5 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import os
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.keras.models import load_model
import numpy as np
# 模型路径
model_path = "./myModel/myModel.h5"
# 抑制tensorflow以防显存占用过多报错
config = tf.compat.v1.ConfigProto(gpu_options=tf.compat.v1.GPUOptions(allow_growth=True))
sess = tf.compat.v1.Session(config=config)
# 读取手写数字数据集
num_mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = num_mnist.load_data()
# 读取训练好的模型
model = load_model(model_path)
# 打印网络结构
model.summary()
# 评估
model.evaluate(test_images.reshape(-1, 28, 28, 1), test_labels)
# 可视化预测效果
show_num = 200
testShow = test_labels[:show_num]
pred = model.predict(test_images.reshape(-1, 28, 28, 1))
predict = []
for item in pred:
predict.append(np.argmax(item))
# 显示折线图
plt.figure()
plt.title('Conv Predict')
plt.ylabel('true number')
plt.xlabel('img num')
plt.plot(range(testShow.size), predict[:show_num], marker='^', color='coral', label='predict')
plt.plot(range(testShow.size), testShow, marker='o', color='deepskyblue', label='result')
plt.legend()
# 挑选出预测错误的图片,并显示预测值
wrongImg = []
wrongNum = []
for i in range(testShow.size):
if (predict[i] != testShow[i]):
wrongImg.append(test_images[i])
wrongNum.append(predict[i])
for i in range(len(wrongImg)):
plt.figure()
plt.title(str(wrongNum[i]))
plt.imshow(wrongImg[i])
plt.show()