You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
541 lines
14 KiB
541 lines
14 KiB
#include "afl-fuzz.h"
|
|
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/un.h>
|
|
#include <unistd.h>
|
|
|
|
#define BUF_SIZE_INIT 4096
|
|
#define SOCKET_NAME "./atnwalk.socket"
|
|
|
|
// how many errors (e.g. timeouts) to tolerate until moving on to the next queue
|
|
// entry
|
|
#define ATNWALK_ERRORS_MAX 1
|
|
|
|
// how many execution timeouts to tolerate until moving on to the next queue
|
|
// entry
|
|
#define EXEC_TIMEOUT_MAX 2
|
|
|
|
// handshake constants
|
|
const uint8_t SERVER_ARE_YOU_ALIVE = 213;
|
|
const uint8_t SERVER_YES_I_AM_ALIVE = 42;
|
|
|
|
// control bits
|
|
const uint8_t SERVER_CROSSOVER_BIT = 0b00000001;
|
|
const uint8_t SERVER_MUTATE_BIT = 0b00000010;
|
|
const uint8_t SERVER_DECODE_BIT = 0b00000100;
|
|
const uint8_t SERVER_ENCODE_BIT = 0b00001000;
|
|
|
|
typedef struct atnwalk_mutator {
|
|
|
|
afl_state_t *afl;
|
|
uint8_t atnwalk_error_count;
|
|
uint64_t prev_timeouts;
|
|
uint32_t prev_hits;
|
|
uint32_t stage_havoc_cur;
|
|
uint32_t stage_havoc_max;
|
|
uint32_t stage_splice_cur;
|
|
uint32_t stage_splice_max;
|
|
uint8_t *fuzz_buf;
|
|
size_t fuzz_size;
|
|
uint8_t *post_process_buf;
|
|
size_t post_process_size;
|
|
|
|
} atnwalk_mutator_t;
|
|
|
|
int read_all(int fd, uint8_t *buf, size_t buf_size) {
|
|
|
|
int n;
|
|
size_t offset = 0;
|
|
while (offset < buf_size) {
|
|
|
|
n = read(fd, buf + offset, buf_size - offset);
|
|
if (n == -1) { return 0; }
|
|
offset += n;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
int write_all(int fd, uint8_t *buf, size_t buf_size) {
|
|
|
|
int n;
|
|
size_t offset = 0;
|
|
while (offset < buf_size) {
|
|
|
|
n = write(fd, buf + offset, buf_size - offset);
|
|
if (n == -1) { return 0; }
|
|
offset += n;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
void put_uint32(uint8_t *buf, uint32_t val) {
|
|
|
|
buf[0] = (uint8_t)(val >> 24);
|
|
buf[1] = (uint8_t)((val & 0x00ff0000) >> 16);
|
|
buf[2] = (uint8_t)((val & 0x0000ff00) >> 8);
|
|
buf[3] = (uint8_t)(val & 0x000000ff);
|
|
|
|
}
|
|
|
|
uint32_t to_uint32(uint8_t *buf) {
|
|
|
|
uint32_t val = 0;
|
|
val |= (((uint32_t)buf[0]) << 24);
|
|
val |= (((uint32_t)buf[1]) << 16);
|
|
val |= (((uint32_t)buf[2]) << 8);
|
|
val |= ((uint32_t)buf[3]);
|
|
return val;
|
|
|
|
}
|
|
|
|
void put_uint64(uint8_t *buf, uint64_t val) {
|
|
|
|
buf[0] = (uint8_t)(val >> 56);
|
|
buf[1] = (uint8_t)((val & 0x00ff000000000000) >> 48);
|
|
buf[2] = (uint8_t)((val & 0x0000ff0000000000) >> 40);
|
|
buf[3] = (uint8_t)((val & 0x000000ff00000000) >> 32);
|
|
buf[4] = (uint8_t)((val & 0x00000000ff000000) >> 24);
|
|
buf[5] = (uint8_t)((val & 0x0000000000ff0000) >> 16);
|
|
buf[6] = (uint8_t)((val & 0x000000000000ff00) >> 8);
|
|
buf[7] = (uint8_t)(val & 0x00000000000000ff);
|
|
|
|
}
|
|
|
|
/**
|
|
* Initialize this custom mutator
|
|
*
|
|
* @param[in] afl a pointer to the internal state object. Can be ignored for
|
|
* now.
|
|
* @param[in] seed A seed for this mutator - the same seed should always mutate
|
|
* in the same way.
|
|
* @return Pointer to the data object this custom mutator instance should use.
|
|
* There may be multiple instances of this mutator in one afl-fuzz run!
|
|
* Return NULL on error.
|
|
*/
|
|
atnwalk_mutator_t *afl_custom_init(afl_state_t *afl, unsigned int seed) {
|
|
|
|
srand(seed);
|
|
atnwalk_mutator_t *data =
|
|
(atnwalk_mutator_t *)malloc(sizeof(atnwalk_mutator_t));
|
|
if (!data) {
|
|
|
|
perror("afl_custom_init alloc");
|
|
return NULL;
|
|
|
|
}
|
|
|
|
data->afl = afl;
|
|
data->prev_hits = 0;
|
|
data->fuzz_buf = (uint8_t *)malloc(BUF_SIZE_INIT);
|
|
data->fuzz_size = BUF_SIZE_INIT;
|
|
data->post_process_buf = (uint8_t *)malloc(BUF_SIZE_INIT);
|
|
data->post_process_size = BUF_SIZE_INIT;
|
|
return data;
|
|
|
|
}
|
|
|
|
unsigned int afl_custom_fuzz_count(atnwalk_mutator_t *data,
|
|
const unsigned char *buf, size_t buf_size) {
|
|
|
|
// afl_custom_fuzz_count is called exactly once before entering the
|
|
// 'stage-loop' for the current queue entry thus, we use it to reset the error
|
|
// count and to initialize stage variables (somewhat not intended by the API,
|
|
// but still better than rewriting the whole thing to have a custom mutator
|
|
// stage)
|
|
data->atnwalk_error_count = 0;
|
|
data->prev_timeouts = data->afl->total_tmouts;
|
|
|
|
// it might happen that on the last execution of the splice stage a new path
|
|
// is found we need to fix that here and count it
|
|
if (data->prev_hits) {
|
|
|
|
data->afl->stage_finds[STAGE_SPLICE] +=
|
|
data->afl->queued_items + data->afl->saved_crashes - data->prev_hits;
|
|
|
|
}
|
|
|
|
data->prev_hits = data->afl->queued_items + data->afl->saved_crashes;
|
|
data->stage_havoc_cur = 0;
|
|
data->stage_splice_cur = 0;
|
|
|
|
// 50% havoc, 50% splice
|
|
data->stage_havoc_max = data->afl->stage_max >> 1;
|
|
if (data->stage_havoc_max < HAVOC_MIN) { data->stage_havoc_max = HAVOC_MIN; }
|
|
data->stage_splice_max = data->stage_havoc_max;
|
|
return data->stage_havoc_max + data->stage_splice_max;
|
|
|
|
}
|
|
|
|
size_t fail_fatal(int fd_socket, uint8_t **out_buf) {
|
|
|
|
if (fd_socket != -1) { close(fd_socket); }
|
|
*out_buf = NULL;
|
|
fprintf(stderr, "atnwalk.socket not found in current directory!\n");
|
|
exit(-1);
|
|
|
|
}
|
|
|
|
size_t fail_gracefully(int fd_socket, atnwalk_mutator_t *data, uint8_t *buf,
|
|
size_t buf_size, uint8_t **out_buf) {
|
|
|
|
if (fd_socket != -1) { close(fd_socket); }
|
|
data->atnwalk_error_count++;
|
|
if (data->atnwalk_error_count > ATNWALK_ERRORS_MAX) {
|
|
|
|
data->afl->stage_max = data->afl->stage_cur;
|
|
|
|
}
|
|
|
|
*out_buf = buf;
|
|
return buf_size;
|
|
|
|
}
|
|
|
|
/**
|
|
* Perform custom mutations on a given input
|
|
*
|
|
* (Optional for now. Required in the future)
|
|
*
|
|
* @param[in] data pointer returned in afl_custom_init for this fuzz case
|
|
* @param[in] buf Pointer to input data to be mutated
|
|
* @param[in] buf_size Size of input data
|
|
* @param[out] out_buf the buffer we will work on. we can reuse *buf. NULL on
|
|
* error.
|
|
* @param[in] add_buf Buffer containing the additional test case
|
|
* @param[in] add_buf_size Size of the additional test case
|
|
* @param[in] max_size Maximum size of the mutated output. The mutation must not
|
|
* produce data larger than max_size.
|
|
* @return Size of the mutated output.
|
|
*/
|
|
size_t afl_custom_fuzz(atnwalk_mutator_t *data, uint8_t *buf, size_t buf_size,
|
|
uint8_t **out_buf, uint8_t *add_buf, size_t add_buf_size,
|
|
size_t max_size) {
|
|
|
|
struct sockaddr_un addr;
|
|
int fd_socket;
|
|
uint8_t ctrl_buf[8];
|
|
uint8_t wanted;
|
|
|
|
// let's display what's going on in a nice way
|
|
if (data->stage_havoc_cur == 0) {
|
|
|
|
data->afl->stage_name = (uint8_t *)"atnwalk - havoc";
|
|
|
|
}
|
|
|
|
if (data->stage_havoc_cur == data->stage_havoc_max) {
|
|
|
|
data->afl->stage_name = (uint8_t *)"atnwalk - splice";
|
|
|
|
}
|
|
|
|
// increase the respective havoc or splice counters
|
|
if (data->stage_havoc_cur < data->stage_havoc_max) {
|
|
|
|
data->stage_havoc_cur++;
|
|
data->afl->stage_cycles[STAGE_HAVOC]++;
|
|
|
|
} else {
|
|
|
|
// if there is nothing to splice, continue with havoc and skip splicing this
|
|
// time
|
|
if (data->afl->ready_for_splicing_count < 1) {
|
|
|
|
data->stage_havoc_max = data->afl->stage_max;
|
|
data->stage_havoc_cur++;
|
|
data->afl->stage_cycles[STAGE_HAVOC]++;
|
|
|
|
} else {
|
|
|
|
data->stage_splice_cur++;
|
|
data->afl->stage_cycles[STAGE_SPLICE]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// keep track of found new corpus seeds per stage
|
|
if (data->afl->queued_items + data->afl->saved_crashes > data->prev_hits) {
|
|
|
|
if (data->stage_splice_cur <= 1) {
|
|
|
|
data->afl->stage_finds[STAGE_HAVOC] +=
|
|
data->afl->queued_items + data->afl->saved_crashes - data->prev_hits;
|
|
|
|
} else {
|
|
|
|
data->afl->stage_finds[STAGE_SPLICE] +=
|
|
data->afl->queued_items + data->afl->saved_crashes - data->prev_hits;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
data->prev_hits = data->afl->queued_items + data->afl->saved_crashes;
|
|
|
|
// check whether this input produces a lot of timeouts, if it does then
|
|
// abandon this queue entry
|
|
if (data->afl->total_tmouts - data->prev_timeouts >= EXEC_TIMEOUT_MAX) {
|
|
|
|
data->afl->stage_max = data->afl->stage_cur;
|
|
return fail_gracefully(-1, data, buf, buf_size, out_buf);
|
|
|
|
}
|
|
|
|
// initialize the socket
|
|
fd_socket = socket(AF_UNIX, SOCK_STREAM, 0);
|
|
if (fd_socket == -1) { return fail_fatal(fd_socket, out_buf); }
|
|
memset(&addr, 0, sizeof(addr));
|
|
addr.sun_family = AF_UNIX;
|
|
strncpy(addr.sun_path, SOCKET_NAME, sizeof(addr.sun_path) - 1);
|
|
if (connect(fd_socket, (const struct sockaddr *)&addr, sizeof(addr)) == -1) {
|
|
|
|
return fail_fatal(fd_socket, out_buf);
|
|
|
|
}
|
|
|
|
// ask whether the server is alive
|
|
ctrl_buf[0] = SERVER_ARE_YOU_ALIVE;
|
|
if (!write_all(fd_socket, ctrl_buf, 1)) {
|
|
|
|
return fail_fatal(fd_socket, out_buf);
|
|
|
|
}
|
|
|
|
// see whether the server replies as expected
|
|
if (!read_all(fd_socket, ctrl_buf, 1) ||
|
|
ctrl_buf[0] != SERVER_YES_I_AM_ALIVE) {
|
|
|
|
return fail_fatal(fd_socket, out_buf);
|
|
|
|
}
|
|
|
|
// tell the server what we want to do
|
|
wanted = SERVER_MUTATE_BIT | SERVER_ENCODE_BIT;
|
|
|
|
// perform a crossover if we are splicing
|
|
if (data->stage_splice_cur > 0) { wanted |= SERVER_CROSSOVER_BIT; }
|
|
|
|
// tell the server what we want and how much data will be sent
|
|
ctrl_buf[0] = wanted;
|
|
put_uint32(ctrl_buf + 1, (uint32_t)buf_size);
|
|
if (!write_all(fd_socket, ctrl_buf, 5)) {
|
|
|
|
return fail_fatal(fd_socket, out_buf);
|
|
|
|
}
|
|
|
|
// send the data to mutate and encode
|
|
if (!write_all(fd_socket, buf, buf_size)) {
|
|
|
|
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
|
|
|
|
}
|
|
|
|
if (wanted & SERVER_CROSSOVER_BIT) {
|
|
|
|
// since we requested crossover, we will first tell how much additional data
|
|
// is to be expected
|
|
put_uint32(ctrl_buf, (uint32_t)add_buf_size);
|
|
if (!write_all(fd_socket, ctrl_buf, 4)) {
|
|
|
|
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
|
|
|
|
}
|
|
|
|
// send the additional data for crossover
|
|
if (!write_all(fd_socket, add_buf, add_buf_size)) {
|
|
|
|
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
|
|
|
|
}
|
|
|
|
// lastly, a seed is required for crossover so send one
|
|
put_uint64(ctrl_buf, (uint64_t)rand());
|
|
if (!write_all(fd_socket, ctrl_buf, 8)) {
|
|
|
|
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// since we requested mutation, we need to provide a seed for that
|
|
put_uint64(ctrl_buf, (uint64_t)rand());
|
|
if (!write_all(fd_socket, ctrl_buf, 8)) {
|
|
|
|
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
|
|
|
|
}
|
|
|
|
// obtain the required buffer size for the data that will be returned
|
|
if (!read_all(fd_socket, ctrl_buf, 4)) {
|
|
|
|
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
|
|
|
|
}
|
|
|
|
size_t new_size = (size_t)to_uint32(ctrl_buf);
|
|
|
|
// if the data is too large then we ignore this round
|
|
if (new_size > max_size) {
|
|
|
|
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
|
|
|
|
}
|
|
|
|
if (new_size > buf_size) {
|
|
|
|
// buf is too small, need to use data->fuzz_buf, let's see whether we need
|
|
// to reallocate
|
|
if (new_size > data->fuzz_size) {
|
|
|
|
data->fuzz_size = new_size << 1;
|
|
data->fuzz_buf = (uint8_t *)realloc(data->fuzz_buf, data->fuzz_size);
|
|
|
|
}
|
|
|
|
*out_buf = data->fuzz_buf;
|
|
|
|
} else {
|
|
|
|
// new_size fits into buf, so re-use it
|
|
*out_buf = buf;
|
|
|
|
}
|
|
|
|
// obtain the encoded data
|
|
if (!read_all(fd_socket, *out_buf, new_size)) {
|
|
|
|
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
|
|
|
|
}
|
|
|
|
close(fd_socket);
|
|
return new_size;
|
|
|
|
}
|
|
|
|
/**
|
|
* A post-processing function to use right before AFL writes the test case to
|
|
* disk in order to execute the target.
|
|
*
|
|
* (Optional) If this functionality is not needed, simply don't define this
|
|
* function.
|
|
*
|
|
* @param[in] data pointer returned in afl_custom_init for this fuzz case
|
|
* @param[in] buf Buffer containing the test case to be executed
|
|
* @param[in] buf_size Size of the test case
|
|
* @param[out] out_buf Pointer to the buffer containing the test case after
|
|
* processing. External library should allocate memory for out_buf.
|
|
* The buf pointer may be reused (up to the given buf_size);
|
|
* @return Size of the output buffer after processing or the needed amount.
|
|
* A return of 0 indicates an error.
|
|
*/
|
|
size_t afl_custom_post_process(atnwalk_mutator_t *data, uint8_t *buf,
|
|
size_t buf_size, uint8_t **out_buf) {
|
|
|
|
struct sockaddr_un addr;
|
|
int fd_socket;
|
|
uint8_t ctrl_buf[8];
|
|
|
|
// initialize the socket
|
|
fd_socket = socket(AF_UNIX, SOCK_STREAM, 0);
|
|
if (fd_socket == -1) { return fail_fatal(fd_socket, out_buf); }
|
|
memset(&addr, 0, sizeof(addr));
|
|
addr.sun_family = AF_UNIX;
|
|
strncpy(addr.sun_path, SOCKET_NAME, sizeof(addr.sun_path) - 1);
|
|
if (connect(fd_socket, (const struct sockaddr *)&addr, sizeof(addr)) == -1) {
|
|
|
|
return fail_fatal(fd_socket, out_buf);
|
|
|
|
}
|
|
|
|
// ask whether the server is alive
|
|
ctrl_buf[0] = SERVER_ARE_YOU_ALIVE;
|
|
if (!write_all(fd_socket, ctrl_buf, 1)) {
|
|
|
|
return fail_fatal(fd_socket, out_buf);
|
|
|
|
}
|
|
|
|
// see whether the server replies as expected
|
|
if (!read_all(fd_socket, ctrl_buf, 1) ||
|
|
ctrl_buf[0] != SERVER_YES_I_AM_ALIVE) {
|
|
|
|
return fail_fatal(fd_socket, out_buf);
|
|
|
|
}
|
|
|
|
// tell the server what we want and how much data will be sent
|
|
ctrl_buf[0] = SERVER_DECODE_BIT;
|
|
put_uint32(ctrl_buf + 1, (uint32_t)buf_size);
|
|
if (!write_all(fd_socket, ctrl_buf, 5)) {
|
|
|
|
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
|
|
|
|
}
|
|
|
|
// send the data to decode
|
|
if (!write_all(fd_socket, buf, buf_size)) {
|
|
|
|
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
|
|
|
|
}
|
|
|
|
// obtain the required buffer size for the data that will be returned
|
|
if (!read_all(fd_socket, ctrl_buf, 4)) {
|
|
|
|
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
|
|
|
|
}
|
|
|
|
size_t new_size = (size_t)to_uint32(ctrl_buf);
|
|
|
|
// need to use data->post_process_buf, let's see whether we need to reallocate
|
|
if (new_size > data->post_process_size) {
|
|
|
|
data->post_process_size = new_size << 1;
|
|
data->post_process_buf =
|
|
(uint8_t *)realloc(data->post_process_buf, data->post_process_size);
|
|
|
|
}
|
|
|
|
*out_buf = data->post_process_buf;
|
|
|
|
// obtain the decoded data
|
|
if (!read_all(fd_socket, *out_buf, new_size)) {
|
|
|
|
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
|
|
|
|
}
|
|
|
|
close(fd_socket);
|
|
return new_size;
|
|
|
|
}
|
|
|
|
/**
|
|
* Deinitialize everything
|
|
*
|
|
* @param data The data ptr from afl_custom_init
|
|
*/
|
|
void afl_custom_deinit(atnwalk_mutator_t *data) {
|
|
|
|
free(data->fuzz_buf);
|
|
free(data->post_process_buf);
|
|
free(data);
|
|
|
|
}
|
|
|