You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

215 lines
4.9 KiB

/*
* Copyright (c) 1985 Regents of the University of California.
* All rights reserved. The Berkeley software License Agreement
* specifies the terms and conditions for redistribution.
*/
#ifndef lint
static char sccsid[] = "@(#)j1.c 5.3 (Berkeley) 9/22/88";
#endif /* not lint */
/*
floating point Bessel's function
of the first and second kinds
of order one
j1(x) returns the value of J1(x)
for all real values of x.
There are no error returns.
Calls sin, cos, sqrt.
There is a niggling bug in J1 which
causes errors up to 2e-16 for x in the
interval [-8,8].
The bug is caused by an inappropriate order
of summation of the series. rhm will fix it
someday.
Coefficients are from Hart & Cheney.
#6050 (20.98D)
#6750 (19.19D)
#7150 (19.35D)
y1(x) returns the value of Y1(x)
for positive real values of x.
For x<=0, if on the VAX, error number EDOM is set and
the reserved operand fault is generated;
otherwise (an IEEE machine) an invalid operation is performed.
Calls sin, cos, sqrt, log, j1.
The values of Y1 have not been checked
to more than ten places.
Coefficients are from Hart & Cheney.
#6447 (22.18D)
#6750 (19.19D)
#7150 (19.35D)
*/
#include <math.h>
#if defined(vax)||defined(tahoe)
#include <errno.h>
#else /* defined(vax)||defined(tahoe) */
static const double zero = 0.e0;
#endif /* defined(vax)||defined(tahoe) */
static double pzero, qzero;
static const double tpi = .6366197723675813430755350535e0;
static const double pio4 = .7853981633974483096156608458e0;
static const double p1[] = {
0.581199354001606143928050809e21,
-.6672106568924916298020941484e20,
0.2316433580634002297931815435e19,
-.3588817569910106050743641413e17,
0.2908795263834775409737601689e15,
-.1322983480332126453125473247e13,
0.3413234182301700539091292655e10,
-.4695753530642995859767162166e7,
0.2701122710892323414856790990e4,
};
static const double q1[] = {
0.1162398708003212287858529400e22,
0.1185770712190320999837113348e20,
0.6092061398917521746105196863e17,
0.2081661221307607351240184229e15,
0.5243710262167649715406728642e12,
0.1013863514358673989967045588e10,
0.1501793594998585505921097578e7,
0.1606931573481487801970916749e4,
1.0,
};
static const double p2[] = {
-.4435757816794127857114720794e7,
-.9942246505077641195658377899e7,
-.6603373248364939109255245434e7,
-.1523529351181137383255105722e7,
-.1098240554345934672737413139e6,
-.1611616644324610116477412898e4,
0.0,
};
static const double q2[] = {
-.4435757816794127856828016962e7,
-.9934124389934585658967556309e7,
-.6585339479723087072826915069e7,
-.1511809506634160881644546358e7,
-.1072638599110382011903063867e6,
-.1455009440190496182453565068e4,
1.0,
};
static const double p3[] = {
0.3322091340985722351859704442e5,
0.8514516067533570196555001171e5,
0.6617883658127083517939992166e5,
0.1849426287322386679652009819e5,
0.1706375429020768002061283546e4,
0.3526513384663603218592175580e2,
0.0,
};
static const double q3[] = {
0.7087128194102874357377502472e6,
0.1819458042243997298924553839e7,
0.1419460669603720892855755253e7,
0.4002944358226697511708610813e6,
0.3789022974577220264142952256e5,
0.8638367769604990967475517183e3,
1.0,
};
static const double p4[] = {
-.9963753424306922225996744354e23,
0.2655473831434854326894248968e23,
-.1212297555414509577913561535e22,
0.2193107339917797592111427556e20,
-.1965887462722140658820322248e18,
0.9569930239921683481121552788e15,
-.2580681702194450950541426399e13,
0.3639488548124002058278999428e10,
-.2108847540133123652824139923e7,
0.0,
};
static const double q4[] = {
0.5082067366941243245314424152e24,
0.5435310377188854170800653097e22,
0.2954987935897148674290758119e20,
0.1082258259408819552553850180e18,
0.2976632125647276729292742282e15,
0.6465340881265275571961681500e12,
0.1128686837169442121732366891e10,
0.1563282754899580604737366452e7,
0.1612361029677000859332072312e4,
1.0,
};
static void asympt(double);
double
j1(double arg)
{
double xsq, n, d, x;
int i;
x = arg;
if(x < 0.) x = -x;
if(x > 8.){
asympt(x);
n = x - 3.*pio4;
n = sqrt(tpi/x)*(pzero*cos(n) - qzero*sin(n));
if(arg <0.) n = -n;
return(n);
}
xsq = x*x;
for(n=0,d=0,i=8;i>=0;i--){
n = n*xsq + p1[i];
d = d*xsq + q1[i];
}
return(arg*n/d);
}
double
y1(double arg)
{
double xsq, n, d, x;
int i;
x = arg;
if(x <= 0.){
#if defined(vax)||defined(tahoe)
return(infnan(EDOM)); /* NaN */
#else /* defined(vax)||defined(tahoe) */
return(zero/zero); /* IEEE machines: invalid operation */
#endif /* defined(vax)||defined(tahoe) */
}
if(x > 8.){
asympt(x);
n = x - 3*pio4;
return(sqrt(tpi/x)*(pzero*sin(n) + qzero*cos(n)));
}
xsq = x*x;
for(n=0,d=0,i=9;i>=0;i--){
n = n*xsq + p4[i];
d = d*xsq + q4[i];
}
return(x*n/d + tpi*(j1(x)*log(x)-1./x));
}
static void
asympt(double arg)
{
double zsq, n, d;
int i;
zsq = 64./(arg*arg);
for(n=0,d=0,i=6;i>=0;i--){
n = n*zsq + p2[i];
d = d*zsq + q2[i];
}
pzero = n/d;
for(n=0,d=0,i=6;i>=0;i--){
n = n*zsq + p3[i];
d = d*zsq + q3[i];
}
qzero = (8./arg)*(n/d);
}