You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
2.5 KiB
125 lines
2.5 KiB
/*
|
|
* Copyright (c) 1985 Regents of the University of California.
|
|
* All rights reserved. The Berkeley software License Agreement
|
|
* specifies the terms and conditions for redistribution.
|
|
*/
|
|
|
|
#ifndef lint
|
|
static char sccsid[] = "@(#)erf.c 5.2 (Berkeley) 4/29/88";
|
|
#endif /* not lint */
|
|
|
|
/*
|
|
C program for floating point error function
|
|
|
|
erf(x) returns the error function of its argument
|
|
erfc(x) returns 1.0-erf(x)
|
|
|
|
erf(x) is defined by
|
|
${2 over sqrt(pi)} int from 0 to x e sup {-t sup 2} dt$
|
|
|
|
the entry for erfc is provided because of the
|
|
extreme loss of relative accuracy if erf(x) is
|
|
called for large x and the result subtracted
|
|
from 1. (e.g. for x= 10, 12 places are lost).
|
|
|
|
There are no error returns.
|
|
|
|
Calls exp.
|
|
|
|
Coefficients for large x are #5667 from Hart & Cheney (18.72D).
|
|
*/
|
|
|
|
#include <soft.h>
|
|
|
|
#define M 7
|
|
#define N 9
|
|
static double torp = 1.1283791670955125738961589031;
|
|
static double p1[] = {
|
|
0.804373630960840172832162e5,
|
|
0.740407142710151470082064e4,
|
|
0.301782788536507577809226e4,
|
|
0.380140318123903008244444e2,
|
|
0.143383842191748205576712e2,
|
|
-.288805137207594084924010e0,
|
|
0.007547728033418631287834e0,
|
|
};
|
|
static double q1[] = {
|
|
0.804373630960840172826266e5,
|
|
0.342165257924628539769006e5,
|
|
0.637960017324428279487120e4,
|
|
0.658070155459240506326937e3,
|
|
0.380190713951939403753468e2,
|
|
0.100000000000000000000000e1,
|
|
0.0,
|
|
};
|
|
static double p2[] = {
|
|
0.18263348842295112592168999e4,
|
|
0.28980293292167655611275846e4,
|
|
0.2320439590251635247384768711e4,
|
|
0.1143262070703886173606073338e4,
|
|
0.3685196154710010637133875746e3,
|
|
0.7708161730368428609781633646e2,
|
|
0.9675807882987265400604202961e1,
|
|
0.5641877825507397413087057563e0,
|
|
0.0,
|
|
};
|
|
static double q2[] = {
|
|
0.18263348842295112595576438e4,
|
|
0.495882756472114071495438422e4,
|
|
0.60895424232724435504633068e4,
|
|
0.4429612803883682726711528526e4,
|
|
0.2094384367789539593790281779e4,
|
|
0.6617361207107653469211984771e3,
|
|
0.1371255960500622202878443578e3,
|
|
0.1714980943627607849376131193e2,
|
|
1.0,
|
|
};
|
|
|
|
double
|
|
erf(double arg)
|
|
{
|
|
int sign;
|
|
double argsq;
|
|
double d, n;
|
|
int i;
|
|
|
|
sign = 1;
|
|
if(arg < 0.){
|
|
arg = -arg;
|
|
sign = -1;
|
|
}
|
|
if(arg < 0.5){
|
|
argsq = arg*arg;
|
|
for(n=0,d=0,i=M-1; i>=0; i--){
|
|
n = n*argsq + p1[i];
|
|
d = d*argsq + q1[i];
|
|
}
|
|
return(sign*torp*arg*n/d);
|
|
}
|
|
if(arg >= 10.)
|
|
return(sign*1.);
|
|
return(sign*(1. - erfc(arg)));
|
|
}
|
|
|
|
double
|
|
erfc(double arg)
|
|
{
|
|
double n, d;
|
|
int i;
|
|
|
|
if(arg < 0.)
|
|
return(2. - erfc(-arg));
|
|
/*
|
|
if(arg < 0.5)
|
|
return(1. - erf(arg));
|
|
*/
|
|
if(arg >= 10.)
|
|
return(0.);
|
|
|
|
for(n=0,d=0,i=N-1; i>=0; i--){
|
|
n = n*arg + p2[i];
|
|
d = d*arg + q2[i];
|
|
}
|
|
return(exp(-arg*arg)*n/d);
|
|
}
|