You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
4.1 KiB
184 lines
4.1 KiB
#include <soft.h>
|
|
|
|
/*
|
|
floating point Bessel's function
|
|
of the first and second kinds
|
|
of order zero
|
|
|
|
j0(x) returns the value of J0(x)
|
|
for all real values of x.
|
|
|
|
There are no error returns.
|
|
Calls sin, cos, sqrt.
|
|
|
|
There is a niggling bug in J0 which
|
|
causes errors up to 2e-16 for x in the
|
|
interval [-8,8].
|
|
The bug is caused by an inappropriate order
|
|
of summation of the series. rhm will fix it
|
|
someday.
|
|
|
|
Coefficients are from Hart & Cheney.
|
|
#5849 (19.22D)
|
|
#6549 (19.25D)
|
|
#6949 (19.41D)
|
|
|
|
y0(x) returns the value of Y0(x)
|
|
for positive real values of x.
|
|
For x<=0, error number EDOM is set and a
|
|
large negative value is returned.
|
|
|
|
Calls sin, cos, sqrt, log, j0.
|
|
|
|
The values of Y0 have not been checked
|
|
to more than ten places.
|
|
|
|
Coefficients are from Hart & Cheney.
|
|
#6245 (18.78D)
|
|
#6549 (19.25D)
|
|
#6949 (19.41D)
|
|
*/
|
|
|
|
static void asympt(double);
|
|
static double pzero, qzero;
|
|
static double tpi = .6366197723675813430755350535e0;
|
|
static double pio4 = .7853981633974483096156608458e0;
|
|
static double p1[] = {
|
|
0.4933787251794133561816813446e21,
|
|
-.1179157629107610536038440800e21,
|
|
0.6382059341072356562289432465e19,
|
|
-.1367620353088171386865416609e18,
|
|
0.1434354939140344111664316553e16,
|
|
-.8085222034853793871199468171e13,
|
|
0.2507158285536881945555156435e11,
|
|
-.4050412371833132706360663322e8,
|
|
0.2685786856980014981415848441e5,
|
|
};
|
|
static double q1[] = {
|
|
0.4933787251794133562113278438e21,
|
|
0.5428918384092285160200195092e19,
|
|
0.3024635616709462698627330784e17,
|
|
0.1127756739679798507056031594e15,
|
|
0.3123043114941213172572469442e12,
|
|
0.6699987672982239671814028660e9,
|
|
0.1114636098462985378182402543e7,
|
|
0.1363063652328970604442810507e4,
|
|
1.0
|
|
};
|
|
static double p2[] = {
|
|
0.5393485083869438325262122897e7,
|
|
0.1233238476817638145232406055e8,
|
|
0.8413041456550439208464315611e7,
|
|
0.2016135283049983642487182349e7,
|
|
0.1539826532623911470917825993e6,
|
|
0.2485271928957404011288128951e4,
|
|
0.0,
|
|
};
|
|
static double q2[] = {
|
|
0.5393485083869438325560444960e7,
|
|
0.1233831022786324960844856182e8,
|
|
0.8426449050629797331554404810e7,
|
|
0.2025066801570134013891035236e7,
|
|
0.1560017276940030940592769933e6,
|
|
0.2615700736920839685159081813e4,
|
|
1.0,
|
|
};
|
|
static double p3[] = {
|
|
-.3984617357595222463506790588e4,
|
|
-.1038141698748464093880530341e5,
|
|
-.8239066313485606568803548860e4,
|
|
-.2365956170779108192723612816e4,
|
|
-.2262630641933704113967255053e3,
|
|
-.4887199395841261531199129300e1,
|
|
0.0,
|
|
};
|
|
static double q3[] = {
|
|
0.2550155108860942382983170882e6,
|
|
0.6667454239319826986004038103e6,
|
|
0.5332913634216897168722255057e6,
|
|
0.1560213206679291652539287109e6,
|
|
0.1570489191515395519392882766e5,
|
|
0.4087714673983499223402830260e3,
|
|
1.0,
|
|
};
|
|
static double p4[] = {
|
|
-.2750286678629109583701933175e20,
|
|
0.6587473275719554925999402049e20,
|
|
-.5247065581112764941297350814e19,
|
|
0.1375624316399344078571335453e18,
|
|
-.1648605817185729473122082537e16,
|
|
0.1025520859686394284509167421e14,
|
|
-.3436371222979040378171030138e11,
|
|
0.5915213465686889654273830069e8,
|
|
-.4137035497933148554125235152e5,
|
|
};
|
|
static double q4[] = {
|
|
0.3726458838986165881989980e21,
|
|
0.4192417043410839973904769661e19,
|
|
0.2392883043499781857439356652e17,
|
|
0.9162038034075185262489147968e14,
|
|
0.2613065755041081249568482092e12,
|
|
0.5795122640700729537480087915e9,
|
|
0.1001702641288906265666651753e7,
|
|
0.1282452772478993804176329391e4,
|
|
1.0,
|
|
};
|
|
|
|
double j0(double arg)
|
|
{
|
|
double argsq, n, d;
|
|
int i;
|
|
|
|
if(arg < 0.) arg = -arg;
|
|
if(arg > 8.){
|
|
asympt(arg);
|
|
n = arg - pio4;
|
|
return(sqrt(tpi/arg)*(pzero*cos(n) - qzero*sin(n)));
|
|
}
|
|
argsq = arg*arg;
|
|
for(n=0,d=0,i=8;i>=0;i--){
|
|
n = n*argsq + p1[i];
|
|
d = d*argsq + q1[i];
|
|
}
|
|
return(n/d);
|
|
}
|
|
|
|
double y0(double arg)
|
|
{
|
|
double argsq, n, d;
|
|
double sin(), cos(), sqrt(), log(), j0();
|
|
int i;
|
|
|
|
if(arg <= 0.){
|
|
return(-HUGE_VAL);
|
|
}
|
|
if(arg > 8.){
|
|
asympt(arg);
|
|
n = arg - pio4;
|
|
return(sqrt(tpi/arg)*(pzero*sin(n) + qzero*cos(n)));
|
|
}
|
|
argsq = arg*arg;
|
|
for(n=0,d=0,i=8;i>=0;i--){
|
|
n = n*argsq + p4[i];
|
|
d = d*argsq + q4[i];
|
|
}
|
|
return(n/d + tpi*j0(arg)*log(arg));
|
|
}
|
|
|
|
static void asympt(double arg)
|
|
{
|
|
double zsq, n, d;
|
|
int i;
|
|
zsq = 64./(arg*arg);
|
|
for(n=0,d=0,i=6;i>=0;i--){
|
|
n = n*zsq + p2[i];
|
|
d = d*zsq + q2[i];
|
|
}
|
|
pzero = n/d;
|
|
for(n=0,d=0,i=6;i>=0;i--){
|
|
n = n*zsq + p3[i];
|
|
d = d*zsq + q3[i];
|
|
}
|
|
qzero = (8./arg)*(n/d);
|
|
}
|