You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
4.2 KiB
189 lines
4.2 KiB
#include <soft.h>
|
|
|
|
/*
|
|
floating point Bessel's function
|
|
of the first and second kinds
|
|
of order one
|
|
|
|
j1(x) returns the value of J1(x)
|
|
for all real values of x.
|
|
|
|
There are no error returns.
|
|
Calls sin, cos, sqrt.
|
|
|
|
There is a niggling bug in J1 which
|
|
causes errors up to 2e-16 for x in the
|
|
interval [-8,8].
|
|
The bug is caused by an inappropriate order
|
|
of summation of the series. rhm will fix it
|
|
someday.
|
|
|
|
Coefficients are from Hart & Cheney.
|
|
#6050 (20.98D)
|
|
#6750 (19.19D)
|
|
#7150 (19.35D)
|
|
|
|
y1(x) returns the value of Y1(x)
|
|
for positive real values of x.
|
|
For x<=0, error number EDOM is set and a
|
|
large negative value is returned.
|
|
|
|
Calls sin, cos, sqrt, log, j1.
|
|
|
|
The values of Y1 have not been checked
|
|
to more than ten places.
|
|
|
|
Coefficients are from Hart & Cheney.
|
|
#6447 (22.18D)
|
|
#6750 (19.19D)
|
|
#7150 (19.35D)
|
|
*/
|
|
|
|
static void asympt(double);
|
|
static double pzero, qzero;
|
|
static double tpi = .6366197723675813430755350535e0;
|
|
static double pio4 = .7853981633974483096156608458e0;
|
|
static double p1[] = {
|
|
0.581199354001606143928050809e21,
|
|
-.6672106568924916298020941484e20,
|
|
0.2316433580634002297931815435e19,
|
|
-.3588817569910106050743641413e17,
|
|
0.2908795263834775409737601689e15,
|
|
-.1322983480332126453125473247e13,
|
|
0.3413234182301700539091292655e10,
|
|
-.4695753530642995859767162166e7,
|
|
0.2701122710892323414856790990e4,
|
|
};
|
|
static double q1[] = {
|
|
0.1162398708003212287858529400e22,
|
|
0.1185770712190320999837113348e20,
|
|
0.6092061398917521746105196863e17,
|
|
0.2081661221307607351240184229e15,
|
|
0.5243710262167649715406728642e12,
|
|
0.1013863514358673989967045588e10,
|
|
0.1501793594998585505921097578e7,
|
|
0.1606931573481487801970916749e4,
|
|
1.0,
|
|
};
|
|
static double p2[] = {
|
|
-.4435757816794127857114720794e7,
|
|
-.9942246505077641195658377899e7,
|
|
-.6603373248364939109255245434e7,
|
|
-.1523529351181137383255105722e7,
|
|
-.1098240554345934672737413139e6,
|
|
-.1611616644324610116477412898e4,
|
|
0.0,
|
|
};
|
|
static double q2[] = {
|
|
-.4435757816794127856828016962e7,
|
|
-.9934124389934585658967556309e7,
|
|
-.6585339479723087072826915069e7,
|
|
-.1511809506634160881644546358e7,
|
|
-.1072638599110382011903063867e6,
|
|
-.1455009440190496182453565068e4,
|
|
1.0,
|
|
};
|
|
static double p3[] = {
|
|
0.3322091340985722351859704442e5,
|
|
0.8514516067533570196555001171e5,
|
|
0.6617883658127083517939992166e5,
|
|
0.1849426287322386679652009819e5,
|
|
0.1706375429020768002061283546e4,
|
|
0.3526513384663603218592175580e2,
|
|
0.0,
|
|
};
|
|
static double q3[] = {
|
|
0.7087128194102874357377502472e6,
|
|
0.1819458042243997298924553839e7,
|
|
0.1419460669603720892855755253e7,
|
|
0.4002944358226697511708610813e6,
|
|
0.3789022974577220264142952256e5,
|
|
0.8638367769604990967475517183e3,
|
|
1.0,
|
|
};
|
|
static double p4[] = {
|
|
-.9963753424306922225996744354e23,
|
|
0.2655473831434854326894248968e23,
|
|
-.1212297555414509577913561535e22,
|
|
0.2193107339917797592111427556e20,
|
|
-.1965887462722140658820322248e18,
|
|
0.9569930239921683481121552788e15,
|
|
-.2580681702194450950541426399e13,
|
|
0.3639488548124002058278999428e10,
|
|
-.2108847540133123652824139923e7,
|
|
0.0,
|
|
};
|
|
static double q4[] = {
|
|
0.5082067366941243245314424152e24,
|
|
0.5435310377188854170800653097e22,
|
|
0.2954987935897148674290758119e20,
|
|
0.1082258259408819552553850180e18,
|
|
0.2976632125647276729292742282e15,
|
|
0.6465340881265275571961681500e12,
|
|
0.1128686837169442121732366891e10,
|
|
0.1563282754899580604737366452e7,
|
|
0.1612361029677000859332072312e4,
|
|
1.0,
|
|
};
|
|
|
|
double j1(double arg)
|
|
{
|
|
double xsq, n, d, x;
|
|
int i;
|
|
|
|
x = arg;
|
|
if(x < 0.) x = -x;
|
|
if(x > 8.){
|
|
asympt(x);
|
|
n = x - 3.*pio4;
|
|
n = sqrt(tpi/x)*(pzero*cos(n) - qzero*sin(n));
|
|
if(arg <0.) n = -n;
|
|
return(n);
|
|
}
|
|
xsq = x*x;
|
|
for(n=0,d=0,i=8;i>=0;i--){
|
|
n = n*xsq + p1[i];
|
|
d = d*xsq + q1[i];
|
|
}
|
|
return(arg*n/d);
|
|
}
|
|
|
|
double y1(double arg)
|
|
{
|
|
double xsq, n, d, x;
|
|
int i;
|
|
|
|
x = arg;
|
|
if(x <= 0.){
|
|
return(-HUGE_VAL);
|
|
}
|
|
if(x > 8.){
|
|
asympt(x);
|
|
n = x - 3*pio4;
|
|
return(sqrt(tpi/x)*(pzero*sin(n) + qzero*cos(n)));
|
|
}
|
|
xsq = x*x;
|
|
for(n=0,d=0,i=9;i>=0;i--){
|
|
n = n*xsq + p4[i];
|
|
d = d*xsq + q4[i];
|
|
}
|
|
return(x*n/d + tpi*(j1(x)*log(x)-1./x));
|
|
}
|
|
|
|
static void asympt(double arg)
|
|
{
|
|
double zsq, n, d;
|
|
int i;
|
|
zsq = 64./(arg*arg);
|
|
for(n=0,d=0,i=6;i>=0;i--){
|
|
n = n*zsq + p2[i];
|
|
d = d*zsq + q2[i];
|
|
}
|
|
pzero = n/d;
|
|
for(n=0,d=0,i=6;i>=0;i--){
|
|
n = n*zsq + p3[i];
|
|
d = d*zsq + q3[i];
|
|
}
|
|
qzero = (8./arg)*(n/d);
|
|
}
|