import paddle import numpy as np from PIL import Image ''' 参数配置 ''' train_parameters = { "input_size": [3, 224, 224], # 输入图片的shape "class_dim": 5, # 分类数 "label_dict": {'0': 'baihe', '1': 'dangshen', '2': 'gouqi', '3': 'huaihua', '4': 'jinyinhua'}, # 标签字典 } # 预测图片预处理 def load_image(img_path): img = Image.open(img_path) if img.mode != 'RGB': img = img.convert('RGB') img = img.resize((224, 224), Image.BILINEAR) img = np.array(img).astype('float32') img = img.transpose((2, 0, 1)) / 255 # HWC to CHW 及归一化 return img class ConvPool(paddle.nn.Layer): """ 卷积+池化 """ def __init__(self, num_channels, num_filters, filter_size, pool_size, pool_stride, groups, conv_stride=1, conv_padding=1, ): super(ConvPool, self).__init__() for i in range(groups): self.add_sublayer( # 添加子层实例 'bb_%d' % i, paddle.nn.Conv2D( # layer in_channels=num_channels, # 通道数 out_channels=num_filters, # 卷积核个数 kernel_size=filter_size, # 卷积核大小 stride=conv_stride, # 步长 padding=conv_padding, # padding ) ) self.add_sublayer( 'relu%d' % i, paddle.nn.ReLU() ) num_channels = num_filters self.add_sublayer( 'Maxpool', paddle.nn.MaxPool2D( kernel_size=pool_size, # 池化核大小 stride=pool_stride # 池化步长 ) ) def forward(self, inputs): x = inputs for prefix, sub_layer in self.named_children(): # print(prefix,sub_layer) x = sub_layer(x) return x class VGGNet(paddle.nn.Layer): def __init__(self): super(VGGNet, self).__init__() self.convpool01 = ConvPool( 3, 64, 3, 2, 2, 2) # 3:通道数,64:卷积核个数,3:卷积核大小,2:池化核大小,2:池化步长,2:连续卷积个数 self.convpool02 = ConvPool( 64, 128, 3, 2, 2, 2) self.convpool03 = ConvPool( 128, 256, 3, 2, 2, 3) self.convpool04 = ConvPool( 256, 512, 3, 2, 2, 3) self.convpool05 = ConvPool( 512, 512, 3, 2, 2, 3) self.pool_5_shape = 512 * 7 * 7 self.fc01 = paddle.nn.Linear(self.pool_5_shape, 4096) self.fc02 = paddle.nn.Linear(4096, 4096) self.fc03 = paddle.nn.Linear(4096, train_parameters['class_dim']) def forward(self, inputs, label=None): # print('input_shape:', inputs.shape) #[8, 3, 224, 224] """前向计算""" out = self.convpool01(inputs) # print('convpool01_shape:', out.shape) #[8, 64, 112, 112] out = self.convpool02(out) # print('convpool02_shape:', out.shape) #[8, 128, 56, 56] out = self.convpool03(out) # print('convpool03_shape:', out.shape) #[8, 256, 28, 28] out = self.convpool04(out) # print('convpool04_shape:', out.shape) #[8, 512, 14, 14] out = self.convpool05(out) # print('convpool05_shape:', out.shape) #[8, 512, 7, 7] out = paddle.reshape(out, shape=[-1, 512 * 7 * 7]) out = self.fc01(out) out = self.fc02(out) out = self.fc03(out) if label is not None: acc = paddle.metric.accuracy(input=out, label=label) return out, acc else: return out label_dic = train_parameters['label_dict'] # 加载模型 model__state_dict = paddle.load('D:/aistudio/work/checkpoints/save_dir_final.pdparams') model_predict = VGGNet() model_predict.set_state_dict(model__state_dict) infer_img_path = "D:/aistudio/data/Chinese Medicine/baihe/b (1).jpg" print(infer_img_path) infer_img = load_image(infer_img_path) infer_img = infer_img[np.newaxis, :, :, :] # reshape(-1,3,224,224) infer_img = paddle.to_tensor(infer_img) result = model_predict(infer_img) lab = np.argmax(result.numpy()) print("样本: {},被预测为:{}".format(infer_img_path, label_dic[str(lab)]))