|
|
import os
|
|
|
import zipfile
|
|
|
import random
|
|
|
import json
|
|
|
import paddle
|
|
|
import sys
|
|
|
import numpy as np
|
|
|
from PIL import Image
|
|
|
import matplotlib.pyplot as plt
|
|
|
from paddle.io import Dataset
|
|
|
|
|
|
'''
|
|
|
参数配置
|
|
|
'''
|
|
|
train_parameters = {
|
|
|
"input_size": [3, 224, 224], # 输入图片的shape
|
|
|
"class_dim": -1, # 分类数
|
|
|
"src_path": "D:/aistudio/data/dataset/Chinese Medicine.zip", # 原始数据集路径
|
|
|
"target_path": "D:/aistudio/data/", # 要解压的路径
|
|
|
"train_list_path": "D:/aistudio/data/train.txt", # train.txt路径
|
|
|
"eval_list_path": "D:/aistudio/data/eval.txt", # eval.txt路径
|
|
|
"readme_path": "D:/aistudio/data/readme.json", # readme.json路径
|
|
|
"label_dict": {}, # 标签字典
|
|
|
"num_epochs": 1, # 训练轮数
|
|
|
"train_batch_size": 8, # 训练时每个批次的大小
|
|
|
"skip_steps": 10,
|
|
|
"save_steps": 30,
|
|
|
"learning_strategy": { # 优化函数相关的配置
|
|
|
"lr": 0.0001 # 超参数学习率
|
|
|
},
|
|
|
"checkpoints": "D:/aistudio/work/checkpoints" # 保存的路径
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
def unzip_data(src_path,target_path):
|
|
|
"""
|
|
|
解压原始数据集,将src_path路径下的zip包解压至target_path目录下
|
|
|
"""
|
|
|
if(not os.path.isdir(target_path + "Chinese Medicine")):
|
|
|
z = zipfile.ZipFile(src_path, 'r')
|
|
|
z.extractall(path=target_path)
|
|
|
z.close()
|
|
|
|
|
|
|
|
|
def get_data_list(target_path, train_list_path, eval_list_path):
|
|
|
"""
|
|
|
生成数据列表
|
|
|
"""
|
|
|
# 存放所有类别的信息
|
|
|
class_detail = []
|
|
|
# 获取所有类别保存的文件夹名称
|
|
|
data_list_path = target_path + "Chinese Medicine/"
|
|
|
class_dirs = os.listdir(data_list_path)
|
|
|
# 总的图像数量
|
|
|
all_class_images = 0
|
|
|
# 存放类别标签
|
|
|
class_label = 0
|
|
|
# 存放类别数目
|
|
|
class_dim = 0
|
|
|
# 存储要写进eval.txt和train.txt中的内容
|
|
|
trainer_list = []
|
|
|
eval_list = []
|
|
|
# 读取每个类别,['river', 'lawn','church','ice','desert']
|
|
|
for class_dir in class_dirs:
|
|
|
if class_dir != ".DS_Store":
|
|
|
class_dim += 1
|
|
|
# 每个类别的信息
|
|
|
class_detail_list = {}
|
|
|
eval_sum = 0
|
|
|
trainer_sum = 0
|
|
|
# 统计每个类别有多少张图片
|
|
|
class_sum = 0
|
|
|
# 获取类别路径
|
|
|
path = data_list_path + class_dir
|
|
|
# 获取所有图片
|
|
|
img_paths = os.listdir(path)
|
|
|
for img_path in img_paths: # 遍历文件夹下的每个图片
|
|
|
name_path = path + '/' + img_path # 每张图片的路径
|
|
|
if class_sum % 8 == 0: # 每8张图片取一个做验证数据
|
|
|
eval_sum += 1 # test_sum为测试数据的数目
|
|
|
eval_list.append(name_path + "\t%d" % class_label + "\n")
|
|
|
else:
|
|
|
trainer_sum += 1
|
|
|
trainer_list.append(name_path + "\t%d" % class_label + "\n") # trainer_sum测试数据的数目
|
|
|
class_sum += 1 # 每类图片的数目
|
|
|
all_class_images += 1 # 所有类图片的数目
|
|
|
|
|
|
# 说明的json文件的class_detail数据
|
|
|
class_detail_list['class_name'] = class_dir # 类别名称
|
|
|
class_detail_list['class_label'] = class_label # 类别标签
|
|
|
class_detail_list['class_eval_images'] = eval_sum # 该类数据的测试集数目
|
|
|
class_detail_list['class_trainer_images'] = trainer_sum # 该类数据的训练集数目
|
|
|
class_detail.append(class_detail_list)
|
|
|
# 初始化标签列表
|
|
|
train_parameters['label_dict'][str(class_label)] = class_dir
|
|
|
class_label += 1
|
|
|
|
|
|
# 初始化分类数
|
|
|
train_parameters['class_dim'] = class_dim
|
|
|
|
|
|
# 乱序
|
|
|
random.shuffle(eval_list)
|
|
|
with open(eval_list_path, 'a') as f:
|
|
|
for eval_image in eval_list:
|
|
|
f.write(eval_image)
|
|
|
|
|
|
random.shuffle(trainer_list)
|
|
|
with open(train_list_path, 'a') as f2:
|
|
|
for train_image in trainer_list:
|
|
|
f2.write(train_image)
|
|
|
|
|
|
# 说明的json文件信息
|
|
|
readjson = {}
|
|
|
readjson['all_class_name'] = data_list_path # 文件父目录
|
|
|
readjson['all_class_images'] = all_class_images
|
|
|
readjson['class_detail'] = class_detail
|
|
|
jsons = json.dumps(readjson, sort_keys=True, indent=4, separators=(',', ': '))
|
|
|
with open(train_parameters['readme_path'], 'w') as f:
|
|
|
f.write(jsons)
|
|
|
print('生成数据列表完成!')
|
|
|
|
|
|
|
|
|
'''
|
|
|
参数初始化
|
|
|
'''
|
|
|
src_path = train_parameters['src_path']
|
|
|
target_path = train_parameters['target_path']
|
|
|
train_list_path = train_parameters['train_list_path']
|
|
|
eval_list_path = train_parameters['eval_list_path']
|
|
|
|
|
|
'''
|
|
|
解压原始数据到指定路径
|
|
|
'''
|
|
|
unzip_data(src_path, target_path)
|
|
|
|
|
|
'''
|
|
|
划分训练集与验证集,乱序,生成数据列表
|
|
|
'''
|
|
|
# 每次生成数据列表前,首先清空train.txt和eval.txt
|
|
|
with open(train_list_path, 'w') as f:
|
|
|
f.seek(0)
|
|
|
f.truncate()
|
|
|
with open(eval_list_path, 'w') as f:
|
|
|
f.seek(0)
|
|
|
f.truncate()
|
|
|
|
|
|
# 生成数据列表
|
|
|
get_data_list(target_path, train_list_path, eval_list_path)
|
|
|
|
|
|
|
|
|
class dataset(Dataset):
|
|
|
def __init__(self, data_path, mode='train'):
|
|
|
"""
|
|
|
数据读取器
|
|
|
:param data_path: 数据集所在路径
|
|
|
:param mode: train or eval
|
|
|
"""
|
|
|
super().__init__()
|
|
|
self.data_path = data_path
|
|
|
self.img_paths = []
|
|
|
self.labels = []
|
|
|
|
|
|
if mode == 'train':
|
|
|
with open(os.path.join(self.data_path, "train.txt"), "r", encoding="utf-8") as f:
|
|
|
self.info = f.readlines()
|
|
|
for img_info in self.info:
|
|
|
img_path, label = img_info.strip().split('\t')
|
|
|
self.img_paths.append(img_path)
|
|
|
self.labels.append(int(label))
|
|
|
|
|
|
else:
|
|
|
with open(os.path.join(self.data_path, "eval.txt"), "r", encoding="utf-8") as f:
|
|
|
self.info = f.readlines()
|
|
|
for img_info in self.info:
|
|
|
img_path, label = img_info.strip().split('\t')
|
|
|
self.img_paths.append(img_path)
|
|
|
self.labels.append(int(label))
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
"""
|
|
|
获取一组数据
|
|
|
:param index: 文件索引号
|
|
|
:return:
|
|
|
"""
|
|
|
# 第一步打开图像文件并获取label值
|
|
|
img_path = self.img_paths[index]
|
|
|
img = Image.open(img_path)
|
|
|
if img.mode != 'RGB':
|
|
|
img = img.convert('RGB')
|
|
|
img = img.resize((224, 224), Image.BILINEAR)
|
|
|
img = np.array(img).astype('float32')
|
|
|
img = img.transpose((2, 0, 1)) / 255
|
|
|
label = self.labels[index]
|
|
|
label = np.array([label], dtype="int64")
|
|
|
return img, label
|
|
|
|
|
|
def print_sample(self, index: int = 0):
|
|
|
print("文件名", self.img_paths[index], "\t标签值", self.labels[index])
|
|
|
|
|
|
def __len__(self):
|
|
|
return len(self.img_paths)
|
|
|
|
|
|
|
|
|
# 训练数据加载
|
|
|
train_dataset = dataset('D:/aistudio/data', mode='train')
|
|
|
train_loader = paddle.io.DataLoader(train_dataset, batch_size=16, shuffle=True)
|
|
|
# 测试数据加载
|
|
|
eval_dataset = dataset('D:/aistudio/data', mode='eval')
|
|
|
eval_loader = paddle.io.DataLoader(eval_dataset, batch_size=8, shuffle=False)
|
|
|
|
|
|
train_dataset.print_sample(200)
|
|
|
print(train_dataset.__len__())
|
|
|
eval_dataset.print_sample(0)
|
|
|
print(eval_dataset.__len__())
|
|
|
print(eval_dataset.__getitem__(10)[0].shape)
|
|
|
print(eval_dataset.__getitem__(10)[1].shape)
|
|
|
|
|
|
|
|
|
class ConvPool(paddle.nn.Layer):
|
|
|
""" 卷积+池化 """
|
|
|
|
|
|
def __init__(self,
|
|
|
num_channels,
|
|
|
num_filters,
|
|
|
filter_size,
|
|
|
pool_size,
|
|
|
pool_stride,
|
|
|
groups,
|
|
|
conv_stride=1,
|
|
|
conv_padding=1,
|
|
|
):
|
|
|
super(ConvPool, self).__init__()
|
|
|
|
|
|
for i in range(groups):
|
|
|
self.add_sublayer( # 添加子层实例
|
|
|
'bb_%d' % i,
|
|
|
paddle.nn.Conv2D( # layer
|
|
|
in_channels=num_channels, # 通道数
|
|
|
out_channels=num_filters, # 卷积核个数
|
|
|
kernel_size=filter_size, # 卷积核大小
|
|
|
stride=conv_stride, # 步长
|
|
|
padding=conv_padding, # padding
|
|
|
)
|
|
|
)
|
|
|
self.add_sublayer(
|
|
|
'relu%d' % i,
|
|
|
paddle.nn.ReLU()
|
|
|
)
|
|
|
num_channels = num_filters
|
|
|
|
|
|
self.add_sublayer(
|
|
|
'Maxpool',
|
|
|
paddle.nn.MaxPool2D(
|
|
|
kernel_size=pool_size, # 池化核大小
|
|
|
stride=pool_stride # 池化步长
|
|
|
)
|
|
|
)
|
|
|
|
|
|
def forward(self, inputs):
|
|
|
x = inputs
|
|
|
for prefix, sub_layer in self.named_children():
|
|
|
# print(prefix,sub_layer)
|
|
|
x = sub_layer(x)
|
|
|
return x
|
|
|
|
|
|
|
|
|
class VGGNet(paddle.nn.Layer):
|
|
|
|
|
|
def __init__(self):
|
|
|
super(VGGNet, self).__init__()
|
|
|
self.convpool01 = ConvPool(
|
|
|
3, 64, 3, 2, 2, 2) # 3:通道数,64:卷积核个数,3:卷积核大小,2:池化核大小,2:池化步长,2:连续卷积个数
|
|
|
self.convpool02 = ConvPool(
|
|
|
64, 128, 3, 2, 2, 2)
|
|
|
self.convpool03 = ConvPool(
|
|
|
128, 256, 3, 2, 2, 3)
|
|
|
self.convpool04 = ConvPool(
|
|
|
256, 512, 3, 2, 2, 3)
|
|
|
self.convpool05 = ConvPool(
|
|
|
512, 512, 3, 2, 2, 3)
|
|
|
self.pool_5_shape = 512 * 7 * 7
|
|
|
self.fc01 = paddle.nn.Linear(self.pool_5_shape, 4096)
|
|
|
self.fc02 = paddle.nn.Linear(4096, 4096)
|
|
|
self.fc03 = paddle.nn.Linear(4096, train_parameters['class_dim'])
|
|
|
|
|
|
def forward(self, inputs, label=None):
|
|
|
# print('input_shape:', inputs.shape) #[8, 3, 224, 224]
|
|
|
"""前向计算"""
|
|
|
out = self.convpool01(inputs)
|
|
|
# print('convpool01_shape:', out.shape) #[8, 64, 112, 112]
|
|
|
out = self.convpool02(out)
|
|
|
# print('convpool02_shape:', out.shape) #[8, 128, 56, 56]
|
|
|
out = self.convpool03(out)
|
|
|
# print('convpool03_shape:', out.shape) #[8, 256, 28, 28]
|
|
|
out = self.convpool04(out)
|
|
|
# print('convpool04_shape:', out.shape) #[8, 512, 14, 14]
|
|
|
out = self.convpool05(out)
|
|
|
# print('convpool05_shape:', out.shape) #[8, 512, 7, 7]
|
|
|
|
|
|
out = paddle.reshape(out, shape=[-1, 512 * 7 * 7])
|
|
|
out = self.fc01(out)
|
|
|
out = self.fc02(out)
|
|
|
out = self.fc03(out)
|
|
|
|
|
|
if label is not None:
|
|
|
acc = paddle.metric.accuracy(input=out, label=label)
|
|
|
return out, acc
|
|
|
else:
|
|
|
return out
|
|
|
|
|
|
|
|
|
def draw_process(title, color, iters, data, label):
|
|
|
plt.title(title, fontsize=24)
|
|
|
plt.xlabel("iter", fontsize=20)
|
|
|
plt.ylabel(label, fontsize=20)
|
|
|
plt.plot(iters, data, color=color, label=label)
|
|
|
plt.legend()
|
|
|
plt.grid()
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
print(train_parameters['class_dim'])
|
|
|
print(train_parameters['label_dict'])
|
|
|
|
|
|
model = VGGNet()
|
|
|
model.train()
|
|
|
cross_entropy = paddle.nn.CrossEntropyLoss()
|
|
|
optimizer = paddle.optimizer.Adam(learning_rate=train_parameters['learning_strategy']['lr'],
|
|
|
parameters=model.parameters())
|
|
|
|
|
|
steps = 0
|
|
|
Iters, total_loss, total_acc = [], [], []
|
|
|
|
|
|
for epo in range(train_parameters['num_epochs']):
|
|
|
for _, data in enumerate(train_loader()):
|
|
|
steps += 1
|
|
|
x_data = data[0]
|
|
|
y_data = data[1]
|
|
|
predicts, acc = model(x_data, y_data)
|
|
|
loss = cross_entropy(predicts, y_data)
|
|
|
loss.backward()
|
|
|
optimizer.step()
|
|
|
optimizer.clear_grad()
|
|
|
if steps % train_parameters["skip_steps"] == 0:
|
|
|
Iters.append(steps)
|
|
|
total_loss.append(loss.numpy()[0])
|
|
|
total_acc.append(acc.numpy()[0])
|
|
|
# 打印中间过程
|
|
|
print('epo: {}, step: {}, loss is: {}, acc is: {}'\
|
|
|
.format(epo, steps, loss.numpy(), acc.numpy()))
|
|
|
# 保存模型参数
|
|
|
if steps % train_parameters["save_steps"] == 0:
|
|
|
save_path = train_parameters["checkpoints"]+"/"+"save_dir_" + str(steps) + '.pdparams'
|
|
|
print('save model to: ' + save_path)
|
|
|
paddle.save(model.state_dict(),save_path)
|
|
|
paddle.save(model.state_dict(), train_parameters["checkpoints"]+"/"+"save_dir_final.pdparams")
|
|
|
draw_process("trainning loss", "red",Iters,total_loss, "trainning loss")
|
|
|
draw_process("trainning acc", "green",Iters,total_acc, "trainning acc")
|
|
|
|
|
|
|
|
|
'''
|
|
|
模型评估
|
|
|
'''
|
|
|
model__state_dict = paddle.load('work/checkpoints/save_dir_final.pdparams')
|
|
|
model_eval = VGGNet()
|
|
|
model_eval.set_state_dict(model__state_dict)
|
|
|
model_eval.eval()
|
|
|
accs = []
|
|
|
|
|
|
for _, data in enumerate(eval_loader()):
|
|
|
x_data = data[0]
|
|
|
y_data = data[1]
|
|
|
predicts = model_eval(x_data)
|
|
|
acc = paddle.metric.accuracy(predicts, y_data)
|
|
|
accs.append(acc.numpy()[0])
|
|
|
print('模型在验证集上的准确率为:', np.mean(accs))
|
|
|
|
|
|
|
|
|
def unzip_infer_data(src_path, target_path):
|
|
|
"""
|
|
|
解压预测数据集
|
|
|
"""
|
|
|
if(not os.path.isdir(target_path + "Chinese Medicine Infer")):
|
|
|
z = zipfile.ZipFile(src_path, 'r')
|
|
|
z.extractall(path=target_path)
|
|
|
z.close()
|
|
|
|
|
|
|
|
|
def load_image(img_path):
|
|
|
"""
|
|
|
预测图片预处理
|
|
|
"""
|
|
|
img = Image.open(img_path)
|
|
|
if img.mode != 'RGB':
|
|
|
img = img.convert('RGB')
|
|
|
img = img.resize((224, 224), Image.BILINEAR)
|
|
|
img = np.array(img).astype('float32')
|
|
|
img = img.transpose((2, 0, 1)) / 255 # HWC to CHW 及归一化
|
|
|
return img
|
|
|
|
|
|
|
|
|
infer_src_path = 'D:/aistudio/data/dataset/Chinese Medicine Infer.zip'
|
|
|
infer_dst_path = 'D:/aistudio/data/'
|
|
|
unzip_infer_data(infer_src_path,infer_dst_path)
|
|
|
|
|
|
label_dic = train_parameters['label_dict']
|
|
|
|
|
|
model__state_dict = paddle.load('work/checkpoints/save_dir_final.pdparams')
|
|
|
model_predict = VGGNet()
|
|
|
model_predict.set_state_dict(model__state_dict)
|
|
|
model_predict.eval()
|
|
|
infer_imgs_path = os.listdir(infer_dst_path+"Chinese Medicine Infer")
|
|
|
print(infer_imgs_path)
|
|
|
for infer_img_path in infer_imgs_path:
|
|
|
infer_img = load_image(infer_dst_path+"Chinese Medicine Infer/"+infer_img_path)
|
|
|
infer_img = infer_img[np.newaxis, :, :, :] # reshape(-1,3,224,224)
|
|
|
infer_img = paddle.to_tensor(infer_img)
|
|
|
result = model_predict(infer_img)
|
|
|
lab = np.argmax(result.numpy())
|
|
|
print("样本: {},被预测为:{}".format(infer_img_path, label_dic[str(lab)])) |