# CodeDetect开发者指南 本文档为开发者提供CodeDetect系统的详细开发指南,包括系统架构、模块说明、开发环境设置、编码规范、测试指南和发布流程。 ## 目录 1. [系统架构](#系统架构) 2. [开发环境设置](#开发环境设置) 3. [模块开发指南](#模块开发指南) 4. [编码规范](#编码规范) 5. [测试指南](#测试指南) 6. [调试指南](#调试指南) 7. [性能优化](#性能优化) 8. [发布流程](#发布流程) 9. [贡献指南](#贡献指南) --- ## 系统架构 ### 整体架构 ``` ┌─────────────────────────────────────────────────────────────┐ │ Web界面层 │ ├─────────────────┬─────────────────┬─────────────────────────┤ │ REST API │ WebSocket │ 文件上传 │ └─────────────────┴─────────────────┴─────────────────────────┘ │ ┌─────────────────────────────────────────────────────────────┐ │ 业务逻辑层 │ ├─────────────────┬─────────────────┬─────────────────────────┤ │ 工作流管理 │ 作业调度 │ 结果聚合 │ └─────────────────┴─────────────────┴─────────────────────────┘ │ ┌─────────────────────────────────────────────────────────────┐ │ 核心引擎层 │ ├─────────────────┬─────────────────┬─────────────────────────┤ │ 代码解析 │ 规范生成 │ 规范突变 │ └─────────────────┴─────────────────┴─────────────────────────┘ │ ┌─────────────────────────────────────────────────────────────┐ │ 验证执行层 │ ├─────────────────┬─────────────────┬─────────────────────────┤ │ CBMC运行器 │ 结果解析 │ 报告生成 │ └─────────────────┴─────────────────┴─────────────────────────┘ │ ┌─────────────────────────────────────────────────────────────┐ │ 基础设施层 │ ├─────────────────┬─────────────────┬─────────────────────────┤ │ 配置管理 │ 日志系统 │ 监控告警 │ └─────────────────┴─────────────────┴─────────────────────────┘ ``` ### 核心模块 #### 1. 解析模块 (`src/parse/`) **功能**: C/C++代码解析和分析 **主要组件**: - `code_parser.py`: 主解析器,使用clang或自定义解析器 - `ast_processor.py`: AST处理和元数据提取 - `complexity_analyzer.py`: 代码复杂度分析 - `dependency_resolver.py`: 依赖关系解析 **设计原则**: - 模块化设计,支持多种解析器 - 错误恢复机制,部分解析失败不影响整体流程 - 缓存机制提高重复解析性能 #### 2. 突变模块 (`src/mutate/`) **功能**: CBMC规范突变生成和质量评估 **主要组件**: - `engine.py`: 突变引擎主类 - `operators.py`: CBMC特定突变操作符 - `selector.py`: 突变选择策略 - `evaluator.py`: 突变质量评估 - `mutation_types.py`: 突变类型定义 **CBMC突变操作符**: 1. **谓词突变**: 修改条件表达式中的运算符 2. **边界突变**: 调整边界值 3. **算术突变**: 修改算术运算 4. **数组突变**: 修改数组访问和边界 5. **指针突变**: 修改指针操作 #### 3. 验证模块 (`src/verify/`) **功能**: CBMC验证执行和结果分析 **主要组件**: - `cbmc_runner.py`: CBMC执行器 - `command_builder.py`: CBMC命令构建 - `result_parser.py`: 结果解析器 - `harness_gen.py`: 测试线束生成器 - `verification_types.py`: 验证类型定义 **特性**: - 异步执行支持 - 超时控制 - 资源限制 - 结果缓存 #### 4. UI模块 (`src/ui/`) **功能**: Web界面和API服务 **主要组件**: - `web_app.py`: Flask应用 - `api.py`: REST API接口 - `websocket.py`: WebSocket实时通信 - `static/`: 前端静态资源 **技术栈**: - 后端: Flask + SocketIO - 前端: 原生JavaScript + WebSocket - 实时通信: WebSocket #### 5. 配置模块 (`src/config/`) **功能**: 系统配置管理 **主要组件**: - `config_manager.py`: 配置管理器 - `validation.py`: 配置验证 - `environment.py`: 环境变量处理 **特性**: - YAML配置文件支持 - 环境变量覆盖 - 配置验证 - 热重载支持 --- ## 开发环境设置 ### 前置要求 - **操作系统**: Linux (推荐Ubuntu 20.04+) - **Python**: 3.8+ - **内存**: 最少4GB,推荐8GB+ - **存储**: 最少2GB可用空间 ### 依赖安装 1. **系统依赖**: ```bash # Ubuntu/Debian sudo apt-get update sudo apt-get install -y python3 python3-pip python3-venv git cmake build-essential # CBMC安装 sudo apt-get install -y cbmc ``` 2. **Python虚拟环境**: ```bash # 创建虚拟环境 python3 -m venv venv source venv/bin/activate # 升级pip pip install --upgrade pip ``` 3. **项目依赖**: ```bash # 安装项目依赖 pip install -r requirements.txt # 安装开发依赖 pip install -r requirements-dev.txt ``` ### 开发工具配置 1. **VS Code配置** (`.vscode/settings.json`): ```json { "python.linting.enabled": true, "python.linting.pylintEnabled": true, "python.formatting.provider": "black", "editor.formatOnSave": true, "python.testing.pytestEnabled": true, "python.testing.pytestArgs": ["tests"] } ``` 2. **Git配置**: ```bash git config --local user.name "Your Name" git config --local user.email "your.email@example.com" git config --local core.autocrlf input ``` 3. **Pre-commit钩子**: ```bash # 安装pre-commit pre-commit install # 运行pre-commit检查 pre-commit run --all-files ``` ### 环境变量配置 创建 `.env` 文件: ```bash # LLM配置 LLM_PROVIDER=deepseek LLM_MODEL=deepseek-coder LLM_API_KEY=your-api-key LLM_MAX_TOKENS=2000 LLM_TEMPERATURE=0.3 # CBMC配置 CBMC_PATH=/usr/bin/cbmc CBMC_TIMEOUT=300 CBMC_DEPTH=20 # Web配置 WEB_HOST=0.0.0.0 WEB_PORT=8080 WEB_DEBUG=false # 日志配置 LOG_LEVEL=INFO LOG_FILE=logs/app.log ``` --- ## 模块开发指南 ### 新增解析器支持 1. **创建解析器类** (`src/parse/custom_parser.py`): ```python from typing import List, Dict, Any, Optional from dataclasses import dataclass @dataclass class CustomParseResult: functions: List[Dict[str, Any]] variables: List[Dict[str, Any]] complexity: Dict[str, Any] class CustomParser: def __init__(self, config: Optional[Dict] = None): self.config = config or {} def parse_file(self, file_path: str) -> CustomParseResult: """实现文件解析逻辑""" pass def parse_code(self, code: str, filename: str = "temp.c") -> CustomParseResult: """实现代码字符串解析逻辑""" pass def get_supported_extensions(self) -> List[str]: """返回支持的文件扩展名""" return [".c", ".cpp", ".h", ".hpp"] ``` 2. **注册解析器** (`src/parse/__init__.py`): ```python from .custom_parser import CustomParser PARSER_REGISTRY = { "default": DefaultParser, "custom": CustomParser, # 添加更多解析器 } def get_parser(parser_type: str = "default", config: Optional[Dict] = None): """获取指定类型的解析器""" parser_class = PARSER_REGISTRY.get(parser_type, DefaultParser) return parser_class(config) ``` 3. **配置解析器** (`config/default.yaml`): ```yaml parser: type: "custom" # 使用自定义解析器 config: option1: "value1" option2: "value2" ``` ### 新增突变操作符 1. **定义突变类型** (`src/mutate/mutation_types.py`): ```python from enum import Enum class MutationType(Enum): PREDICATE = "predicate" BOUNDARY = "boundary" ARITHMETIC = "arithmetic" ARRAY = "array" POINTER = "pointer" CUSTOM = "custom" # 新增自定义类型 ``` 2. **实现突变操作符** (`src/mutate/operators.py`): ```python class CBMCMutationOperators: def __init__(self, config: Optional[Dict] = None): self.config = config or {} def generate_custom_mutations( self, specification: str, function_metadata: List[Dict] ) -> List[str]: """生成自定义突变""" mutations = [] # 实现自定义突变逻辑 # 例如:修改循环条件 import re loop_pattern = r'for\s*\(\s*.*;\s*.*;\s*.*\s*\)' def replace_loop_condition(match): condition = match.group(0) # 修改循环条件 return condition.replace('i < n', 'i <= n') mutated_spec = re.sub(loop_pattern, replace_loop_condition, specification) if mutated_spec != specification: mutations.append(mutated_spec) return mutations ``` 3. **集成到突变引擎** (`src/mutate/engine.py`): ```python class MutationEngine: def generate_mutations(self, specification: str, function_metadata: List[Dict], **kwargs): # ... 现有逻辑 # 生成自定义突变 if MutationType.CUSTOM in mutation_types: custom_mutations = self.operators.generate_custom_mutations( specification, function_metadata ) for custom_spec in custom_mutations: mutation = CBMCMutation( specification=custom_spec, mutation_type=MutationType.CUSTOM, confidence=0.8, # 评估置信度 description="自定义突变描述" ) all_mutations.append(mutation) ``` ### 新增验证类型 1. **定义验证类型** (`src/verify/verification_types.py`): ```python from enum import Enum class VerificationType(Enum): MEMORY_SAFETY = "memory_safety" OVERFLOW_DETECTION = "overflow_detection" POINTER_VALIDITY = "pointer_validity" CONCURRENCY = "concurrency" CUSTOM_TYPE = "custom_type" # 新增验证类型 ``` 2. **实现验证逻辑** (`src/verify/custom_verifier.py`): ```python class CustomVerifier: def __init__(self, config: Optional[Dict] = None): self.config = config or {} async def verify_custom_type( self, specification: str, source_file: str, function_metadata: Dict ) -> VerificationResult: """实现自定义验证逻辑""" # 构建验证命令 command = self._build_verification_command( specification, source_file, VerificationType.CUSTOM_TYPE ) # 执行验证 result = await self._execute_verification(command) # 解析结果 parsed_result = self._parse_verification_result(result) return parsed_result def _build_verification_command(self, specification: str, source_file: str, verification_type: VerificationType) -> List[str]: """构建验证命令""" base_command = ["cbmc", source_file] # 添加自定义选项 if verification_type == VerificationType.CUSTOM_TYPE: base_command.extend([ "--custom-option", "--custom-value" ]) return base_command ``` ### 新增API端点 1. **定义API路由** (`src/ui/api.py`): ```python from flask import request, jsonify from functools import wraps def require_auth(f): @wraps(f) def decorated(*args, **kwargs): token = request.headers.get('Authorization') if not token or not validate_token(token): return jsonify({"success": False, "error": "Unauthorized"}), 401 return f(*args, **kwargs) return decorated @app.route('/api/custom', methods=['POST']) @require_auth def handle_custom_operation(): """处理自定义操作""" try: data = request.get_json() # 验证输入 if not data or 'required_field' not in data: return jsonify({ "success": False, "error": { "code": "VALIDATION_ERROR", "message": "Missing required field" } }), 400 # 处理业务逻辑 result = process_custom_operation(data) return jsonify({ "success": True, "data": result }) except Exception as e: logger.error(f"Custom operation failed: {e}") return jsonify({ "success": False, "error": { "code": "INTERNAL_ERROR", "message": str(e) } }), 500 ``` 2. **添加WebSocket事件** (`src/ui/websocket.py`): ```python @socketio.on('custom_event') def handle_custom_event(data): """处理自定义WebSocket事件""" try: # 验证事件数据 if not validate_event_data(data): emit('error', {'message': 'Invalid event data'}) return # 处理事件 result = process_custom_event(data) # 发送结果 emit('custom_result', { 'success': True, 'data': result }) except Exception as e: emit('error', { 'success': False, 'error': str(e) }) ``` --- ## 编码规范 ### Python编码规范 #### 1. 代码风格 遵循PEP 8规范,使用Black格式化代码: ```python # 正确的函数定义 def process_verification_result(result: VerificationResult) -> Dict[str, Any]: """处理验证结果并返回格式化数据。 Args: result: 验证结果对象 Returns: 格式化的结果字典 """ if not result: return {"status": "error", "message": "No result provided"} return { "status": result.status, "execution_time": result.execution_time, "memory_used": result.memory_used, "timestamp": datetime.utcnow().isoformat() } ``` #### 2. 类型注解 所有函数和公共方法都应有类型注解: ```python from typing import List, Dict, Any, Optional, Union from dataclasses import dataclass @dataclass class FunctionMetadata: name: str return_type: str parameters: List[Parameter] complexity_score: float line_start: int line_end: int def analyze_function_complexity( metadata: FunctionMetadata, options: Optional[Dict[str, Any]] = None ) -> float: """分析函数复杂度。 Args: metadata: 函数元数据 options: 分析选项 Returns: 复杂度评分 (0.0-1.0) """ options = options or {} # 实现复杂度分析逻辑 return calculate_complexity(metadata) ``` #### 3. 错误处理 使用具体的异常类型和适当的错误消息: ```python class ValidationError(Exception): """验证错误""" pass class ConfigurationError(Exception): """配置错误""" pass def validate_configuration(config: Dict[str, Any]) -> None: """验证配置参数。 Args: config: 配置字典 Raises: ValidationError: 当配置验证失败时 ConfigurationError: 当配置格式错误时 """ if not isinstance(config, dict): raise ConfigurationError("Configuration must be a dictionary") required_keys = ['llm', 'cbmc', 'web'] for key in required_keys: if key not in config: raise ValidationError(f"Missing required configuration key: {key}") # 验证子配置 if not isinstance(config.get('llm'), dict): raise ValidationError("LLM configuration must be a dictionary") ``` #### 4. 日志记录 使用结构化日志记录: ```python import logging import structlog # 配置结构化日志 structlog.configure( processors=[ structlog.stdlib.filter_by_level, structlog.stdlib.add_logger_name, structlog.stdlib.add_log_level, structlog.stdlib.PositionalArgumentsFormatter(), structlog.processors.TimeStamper(fmt="iso"), structlog.processors.StackInfoRenderer(), structlog.processors.format_exc_info, structlog.processors.UnicodeDecoder(), structlog.processors.JSONRenderer() ], context_class=dict, logger_factory=structlog.stdlib.LoggerFactory(), wrapper_class=structlog.stdlib.BoundLogger, cache_logger_on_first_use=True, ) logger = structlog.get_logger() def process_verification_request(request_id: str, data: Dict[str, Any]) -> VerificationResult: """处理验证请求。 Args: request_id: 请求ID data: 请求数据 Returns: 验证结果 """ logger.info( "Processing verification request", request_id=request_id, function_count=len(data.get('functions', [])), verification_types=data.get('verification_types', []) ) try: result = perform_verification(data) logger.info( "Verification completed", request_id=request_id, status=result.status, execution_time=result.execution_time ) return result except Exception as e: logger.error( "Verification failed", request_id=request_id, error=str(e), exc_info=True ) raise ``` ### 文档规范 #### 1. 模块文档 每个模块都应有详细的文档字符串: ```python """ 突变引擎模块 负责生成CBMC验证规范的突变版本,以提高验证覆盖率。 主要功能: - 生成多种类型的突变 - 评估突变质量 - 选择最佳突变组合 - 支持自定义突变策略 使用示例: engine = MutationEngine() mutations = engine.generate_mutations( specification, function_metadata, max_mutations=10 ) """ class MutationEngine: """CBMC突变引擎。 提供智能的突变生成功能,支持多种突变类型和质量评估。 Attributes: operators (CBMCMutationOperators): 突变操作符集合 selector (SpecSelector): 突变选择器 evaluator (QualityEvaluator): 质量评估器 config (Dict): 引擎配置 """ ``` #### 2. 函数文档 遵循Google或NumPy文档字符串格式: ```python def generate_mutations( self, specification: str, function_metadata: List[Dict[str, Any]], max_mutations: int = 10, mutation_types: Optional[List[MutationType]] = None, quality_threshold: float = 0.7 ) -> List[CBMCMutation]: """生成验证规范的突变版本。 基于原始规范和函数元数据,生成多种类型的突变以提高验证覆盖率。 使用质量评估确保生成的突变具有实际价值。 Args: specification: 原始CBMC验证规范字符串 function_metadata: 函数元数据列表,包含函数名、参数、复杂度等信息 max_mutations: 最大突变数量,默认为10 mutation_types: 要生成的突变类型列表,None表示使用所有类型 quality_threshold: 突变质量阈值 (0.0-1.0),低于此值的突变将被丢弃 Returns: 突变结果列表,按质量评分排序 Raises: ValidationError: 当规范格式无效时 ConfigurationError: 当配置错误时 Example: >>> engine = MutationEngine() >>> metadata = [{"name": "test", "complexity_score": 0.5}] >>> mutations = engine.generate_mutations( ... "void test() { }", ... metadata, ... max_mutations=5 ... ) >>> len(mutations) <= 5 True """ ``` ### 测试规范 #### 1. 测试文件组织 ``` tests/ ├── unit/ # 单元测试 │ ├── test_parse.py │ ├── test_mutate.py │ └── test_verify.py ├── integration/ # 集成测试 │ ├── test_complete_pipeline.py │ └── test_freertos_verification.py ├── performance/ # 性能测试 │ └── test_system_performance.py └── regression/ # 回归测试 └── test_regression_suite.py ``` #### 2. 测试用例编写 ```python import pytest from unittest.mock import Mock, AsyncMock from src.mutate.engine import MutationEngine from src.mutate.mutation_types import MutationType class TestMutationEngine: """突变引擎测试类""" @pytest.fixture def mutation_engine(self): """创建突变引擎实例""" config = {"max_mutations": 5} return MutationEngine(config) @pytest.fixture def sample_specification(self): """示例规范""" return "void test(int x) { __CPROVER_assume(x > 0); }" @pytest.fixture def sample_metadata(self): """示例函数元数据""" return [{ "name": "test", "return_type": "void", "parameters": [{"name": "x", "type": "int"}], "complexity_score": 0.5 }] def test_generate_mutations_basic( self, mutation_engine: MutationEngine, sample_specification: str, sample_metadata: List[Dict] ): """测试基本突变生成功能。 验证突变引擎能够正常生成突变,并返回正确格式的结果。 """ mutations = mutation_engine.generate_mutations( sample_specification, sample_metadata, max_mutations=3 ) # 验证基本属性 assert isinstance(mutations, list) assert len(mutations) <= 3 # 验证突变对象结构 for mutation in mutations: assert hasattr(mutation, 'specification') assert hasattr(mutation, 'mutation_type') assert hasattr(mutation, 'confidence') assert mutation.specification is not None assert mutation.mutation_type is not None assert 0 <= mutation.confidence <= 1 @pytest.mark.asyncio async def test_generate_mutations_async( self, mutation_engine: MutationEngine, sample_specification: str, sample_metadata: List[Dict] ): """测试异步突变生成功能。 验证突变引擎的异步方法能够正常工作。 """ mutations = await mutation_engine.generate_mutations_async( sample_specification, sample_metadata ) assert isinstance(mutations, list) assert len(mutations) > 0 def test_quality_threshold_filtering( self, mutation_engine: MutationEngine, sample_specification: str, sample_metadata: List[Dict] ): """测试质量阈值过滤功能。 验证低质量的突变被正确过滤。 """ mutations = mutation_engine.generate_mutations( sample_specification, sample_metadata, quality_threshold=0.9 # 高阈值 ) # 验证所有突变都满足质量要求 for mutation in mutations: assert mutation.confidence >= 0.9 def test_empty_specification_handling( self, mutation_engine: MutationEngine ): """测试空规范处理。 验证对空输入的处理是否正确。 """ mutations = mutation_engine.generate_mutations("", [], max_mutations=1) # 空规范可能返回空列表或抛出异常 assert isinstance(mutations, list) ``` --- ## 测试指南 ### 测试框架 使用pytest作为主要测试框架: ```bash # 运行所有测试 pytest # 运行特定测试文件 pytest tests/unit/test_mutate.py # 运行特定测试类 pytest tests/unit/test_mutate.py::TestMutationEngine # 运行特定测试方法 pytest tests/unit/test_mutate.py::TestMutationEngine::test_generate_mutations_basic # 生成覆盖率报告 pytest --cov=src --cov-report=html --cov-report=term # 并行运行测试 pytest -n auto # 需要pytest-xdist插件 ``` ### 测试分类 #### 1. 单元测试 测试单个函数或类的功能: ```python def test_function_isolation(self): """测试函数的独立功能""" # 准备测试数据 input_data = {"key": "value"} # 调用被测试函数 result = function_to_test(input_data) # 验证结果 assert result == expected_result ``` #### 2. 集成测试 测试模块间的交互: ```python def test_complete_pipeline(self): """测试完整的验证管道""" # 准备测试文件 with tempfile.NamedTemporaryFile(mode='w', suffix='.c', delete=False) as f: f.write(test_code) temp_file = f.name try: # 运行完整管道 result = run_verification_pipeline(temp_file) # 验证管道结果 assert result['success'] is True assert 'verifications' in result assert len(result['verifications']) > 0 finally: os.unlink(temp_file) ``` #### 3. 性能测试 测试系统性能特征: ```python def test_response_time(self): """测试API响应时间""" start_time = time.time() # 执行操作 result = api_call() end_time = time.time() response_time = end_time - start_time # 验证性能要求 assert response_time < 1.0, f"响应时间 {response_time:.2f}s 过长" ``` ### Mock和Stub 使用unittest.mock创建测试替身: ```python from unittest.mock import Mock, AsyncMock, patch def test_with_mock_llm(self): """使用Mock的LLM服务测试""" with patch('src.mutate.engine.LLMService') as mock_llm: # 设置Mock行为 mock_llm.return_value.generate_spec.return_value = "mocked_spec" # 运行测试 result = mutation_engine.generate_spec(function_metadata) # 验证Mock被正确调用 mock_llm.return_value.generate_spec.assert_called_once() assert result == "mocked_spec" def test_async_with_mock(self): """测试异步函数的Mock""" async def test_async_operation(): with patch('src.verify.cbmc_runner.CBMCRunner') as mock_runner: # 设置异步Mock mock_runner.return_value.run_verification.return_value = AsyncMock( return_value=mock_verification_result ) # 运行异步测试 result = await runner.run_verification( function_metadata, source_file, specification ) # 验证结果 assert result.status == "success" ``` ### 测试数据管理 #### 1. 测试固件 使用pytest fixture管理测试数据: ```python @pytest.fixture def sample_c_code(self): """示例C代码""" return """ int add(int a, int b) { return a + b; } """ @pytest.fixture def sample_function_metadata(self): """示例函数元数据""" return { "name": "add", "return_type": "int", "parameters": [ {"name": "a", "type": "int"}, {"name": "b", "type": "int"} ], "complexity_score": 0.2 } @pytest.fixture def temporary_c_file(self, sample_c_code): """临时C文件""" with tempfile.NamedTemporaryFile(mode='w', suffix='.c', delete=False) as f: f.write(sample_c_code) temp_file = f.name yield temp_file # 清理 os.unlink(temp_file) ``` #### 2. 参数化测试 使用参数化测试减少代码重复: ```python @pytest.mark.parametrize("input_code,expected_functions", [ ("int f() { return 0; }", ["f"]), ("int f() { return 0; } int g() { return 1; }", ["f", "g"]), ("", []), # 空代码 ]) def test_function_extraction(self, input_code, expected_functions): """参数化测试函数提取""" parser = CodeParser() result = parser.parse_code(input_code) actual_functions = [f.name for f in result.functions] assert actual_functions == expected_functions ``` --- ## 调试指南 ### 日志调试 #### 1. 配置调试日志 ```python import logging # 设置调试级别日志 logging.basicConfig( level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) def debug_function_call(func): """装饰器:记录函数调用""" @functools.wraps(func) def wrapper(*args, **kwargs): logger.debug(f"调用 {func.__name__}: args={args}, kwargs={kwargs}") result = func(*args, **kwargs) logger.debug(f"{func.__name__} 返回: {result}") return result return wrapper @debug_function_call def process_data(data): """处理数据函数""" return data * 2 ``` #### 2. 使用调试器 ```python import pdb def debug_complex_function(data): """复杂函数调试""" result = [] for item in data: # 设置断点 if len(result) > 5: pdb.set_trace() # 手动断点 processed_item = item * 2 result.append(processed_item) return result ``` ### 性能调试 #### 1. 性能分析 ```python import cProfile import pstats def profile_function(): """性能分析函数""" profiler = cProfile.Profile() profiler.enable() # 运行要分析的代码 result = run_verification_pipeline("test.c") profiler.disable() stats = pstats.Stats(profiler).sort_stats('cumulative') stats.print_stats(10) # 显示前10个最耗时的函数 return result ``` #### 2. 内存调试 ```python import tracemalloc def debug_memory_usage(): """内存使用调试""" # 开始内存跟踪 tracemalloc.start() # 运行代码 result = memory_intensive_operation() # 获取内存快照 snapshot1 = tracemalloc.take_snapshot() snapshot2 = tracemalloc.take_snapshot() # 比较快照 top_stats = snapshot2.compare_to(snapshot1, 'lineno') print("[ Top 10 内存增长位置 ]") for stat in top_stats[:10]: print(stat) tracemalloc.stop() return result ``` ### 远程调试 #### 1. 配置远程调试 ```python import debugpy def enable_remote_debug(): """启用远程调试""" debugpy.listen(5678) # 监听端口 print("等待调试器连接...") debugpy.wait_for_client() # 等待调试器连接 print("调试器已连接") # 在应用启动时调用 if os.getenv('DEBUG_MODE') == 'true': enable_remote_debug() ``` #### 2. VS Code远程调试配置 ```json { "version": "0.2.0", "configurations": [ { "name": "Python: Remote Debug", "type": "python", "request": "attach", "connect": { "host": "localhost", "port": 5678 }, "pathMappings": [ { "localRoot": "${workspaceFolder}", "remoteRoot": "." } ] } ] } ``` --- ## 性能优化 ### 代码优化 #### 1. 算法优化 ```python # 优化前:O(n²) 复杂度 def find_duplicates_slow(items): """查找重复项(慢版本)""" duplicates = [] for i, item1 in enumerate(items): for j, item2 in enumerate(items): if i != j and item1 == item2: duplicates.append(item1) return duplicates # 优化后:O(n) 复杂度 def find_duplicates_fast(items): """查找重复项(快版本)""" seen = set() duplicates = [] for item in items: if item in seen and item not in duplicates: duplicates.append(item) seen.add(item) return duplicates ``` #### 2. 缓存优化 ```python from functools import lru_cache import hashlib # 使用LRU缓存 @lru_cache(maxsize=1000) def expensive_computation(input_data): """昂贵的计算函数""" result = complex_calculation(input_data) return result # 自定义缓存 class ComputationCache: def __init__(self, max_size=1000): self.cache = {} self.max_size = max_size def get(self, key): return self.cache.get(key) def set(self, key, value): if len(self.cache) >= self.max_size: # 移除最旧的条目 oldest_key = next(iter(self.cache)) del self.cache[oldest_key] self.cache[key] = value def compute(self, input_data): """带缓存的计算""" cache_key = hashlib.md5(str(input_data).encode()).hexdigest() cached_result = self.get(cache_key) if cached_result is not None: return cached_result result = expensive_computation(input_data) self.set(cache_key, result) return result ``` ### 并发优化 #### 1. 异步I/O ```python import asyncio import aiohttp # 同步版本(慢) def fetch_urls_sync(urls): """同步获取URL内容""" results = [] for url in urls: response = requests.get(url) results.append(response.json()) return results # 异步版本(快) async def fetch_urls_async(urls): """异步获取URL内容""" async with aiohttp.ClientSession() as session: tasks = [fetch_single_url(session, url) for url in urls] results = await asyncio.gather(*tasks) return results async def fetch_single_url(session, url): """获取单个URL""" async with session.get(url) as response: return await response.json() ``` #### 2. 线程池优化 ```python from concurrent.futures import ThreadPoolExecutor, as_completed def parallel_processing(items, max_workers=4): """并行处理""" with ThreadPoolExecutor(max_workers=max_workers) as executor: # 提交所有任务 futures = [executor.submit(process_item, item) for item in items] # 收集结果 results = [] for future in as_completed(futures): try: result = future.result() results.append(result) except Exception as e: logger.error(f"处理失败: {e}") return results ``` ### 内存优化 #### 1. 生成器使用 ```python # 内存密集型版本 def process_large_file_list(file_paths): """处理大文件列表(内存密集)""" results = [] for file_path in file_paths: data = read_large_file(file_path) processed_data = process_data(data) results.append(processed_data) return results # 一次性返回所有结果 # 内存友好版本 def process_large_file_generator(file_paths): """处理大文件列表(生成器)""" for file_path in file_paths: data = read_large_file(file_path) processed_data = process_data(data) yield processed_data # 逐个生成结果 # 使用生成器 for result in process_large_file_generator(large_file_list): # 每次只处理一个结果 handle_result(result) ``` #### 2. 对象池模式 ```python class ObjectPool: """对象池模式""" def __init__(self, creator_func, max_size=10): self.creator_func = creator_func self.max_size = max_size self.pool = [] self.lock = threading.Lock() def get(self): """获取对象""" with self.lock: if self.pool: return self.pool.pop() return self.creator_func() def put(self, obj): """归还对象""" with self.lock: if len(self.pool) < self.max_size: # 重置对象状态 if hasattr(obj, 'reset'): obj.reset() self.pool.append(obj) # 使用对象池 connection_pool = ObjectPool(create_db_connection, max_size=5) def database_operation(): """数据库操作""" conn = connection_pool.get() try: result = execute_query(conn, "SELECT * FROM table") return result finally: connection_pool.put(conn) ``` --- ## 发布流程 ### 版本管理 #### 1. 语义化版本 遵循语义化版本规范:`MAJOR.MINOR.PATCH` - **MAJOR**: 不兼容的API更改 - **MINOR**: 向后兼容的功能新增 - **PATCH**: 向后兼容的问题修复 #### 2. 版本标签 ```bash # 创建版本标签 git tag -a v1.2.3 -m "Version 1.2.3: Add new features and fix bugs" # 推送标签 git push origin v1.2.3 # 查看标签 git tag -l ``` ### 构建和测试 #### 1. 自动化构建 ```bash #!/bin/bash # build.sh - 构建脚本 set -e # 遇到错误立即退出 echo "=== 开始构建 ===" # 1. 安装依赖 echo "安装依赖..." pip install -r requirements.txt pip install -r requirements-dev.txt # 2. 运行测试 echo "运行测试..." pytest --cov=src --cov-report=xml --cov-report=term pytest_exit_code=$? if [ $pytest_exit_code -ne 0 ]; then echo "测试失败,构建终止" exit 1 fi # 3. 代码质量检查 echo "代码质量检查..." flake8 src/ --max-line-length=100 black --check src/ mypy src/ # 4. 构建文档 echo "构建文档..." cd docs/ make html cd .. # 5. 创建发布包 echo "创建发布包..." python setup.py sdist bdist_wheel echo "=== 构建完成 ===" ``` #### 2. Docker构建 ```dockerfile # Dockerfile FROM python:3.9-slim # 安装系统依赖 RUN apt-get update && apt-get install -y \ cbmc \ git \ cmake \ build-essential \ && rm -rf /var/lib/apt/lists/* # 设置工作目录 WORKDIR /app # 复制依赖文件 COPY requirements.txt . COPY requirements-dev.txt . # 安装Python依赖 RUN pip install --no-cache-dir -r requirements.txt # 复制应用代码 COPY src/ ./src/ COPY config/ ./config/ # 创建日志目录 RUN mkdir -p logs # 设置环境变量 ENV PYTHONPATH=/app ENV LOG_LEVEL=INFO # 暴露端口 EXPOSE 8080 # 启动命令 CMD ["python", "src/ui/web_app.py"] ``` ### 发布检查清单 #### 1. 代码质量检查 - [ ] 所有测试通过 - [ ] 代码覆盖率 > 80% - [ ] 静态代码分析通过 - [ ] 类型检查通过 - [ ] 安全扫描通过 #### 2. 文档检查 - [ ] API文档更新 - [ ] 用户手册更新 - [ ] 更新日志编写 - [ ] 版本说明编写 #### 3. 兼容性检查 - [ ] 向后兼容性测试 - [ ] 依赖版本兼容性 - [ ] 配置文件兼容性 - [ ] 数据库迁移测试 ### 部署流程 #### 1. 滚动更新 ```bash #!/bin/bash # deploy.sh - 部署脚本 set -e APP_NAME="codedetect" IMAGE_TAG="v1.2.3" REGISTRY="your-registry" echo "=== 开始部署 ===" # 1. 构建和推送镜像 echo "构建Docker镜像..." docker build -t ${REGISTRY}/${APP_NAME}:${IMAGE_TAG} . docker push ${REGISTRY}/${APP_NAME}:${IMAGE_TAG} # 2. 更新Kubernetes部署 echo "更新Kubernetes部署..." kubectl set image deployment/${APP_NAME} \ ${APP_NAME}=${REGISTRY}/${APP_NAME}:${IMAGE_TAG} # 3. 等待部署完成 echo "等待部署完成..." kubectl rollout status deployment/${APP_NAME} --timeout=300s # 4. 健康检查 echo "执行健康检查..." sleep 30 curl -f http://your-domain.com/api/health || exit 1 echo "=== 部署完成 ===" ``` #### 2. 回滚机制 ```bash #!/bin/bash # rollback.sh - 回滚脚本 set -e APP_NAME="codedetect" PREVIOUS_VERSION="v1.2.2" echo "=== 开始回滚 ===" # 1. 获取当前版本 CURRENT_VERSION=$(kubectl get deployment ${APP_NAME} -o jsonpath='{.spec.template.spec.containers[0].image}') echo "当前版本: ${CURRENT_VERSION}" # 2. 回滚到上一个版本 echo "回滚到版本: ${PREVIOUS_VERSION}" kubectl set image deployment/${APP_NAME} \ ${APP_NAME}=your-registry/${APP_NAME}:${PREVIOUS_VERSION} # 3. 等待回滚完成 echo "等待回滚完成..." kubectl rollout status deployment/${APP_NAME} --timeout=300s # 4. 验证回滚 echo "验证回滚结果..." kubectl get deployment ${APP_NAME} echo "=== 回滚完成 ===" ``` --- ## 贡献指南 ### 贡献流程 #### 1. Fork和克隆 ```bash # Fork项目到个人账户 git clone https://github.com/your-username/codedetect.git cd codedetect ``` #### 2. 创建功能分支 ```bash # 创建功能分支 git checkout -b feature/new-feature # 或者创建修复分支 git checkout -b fix/bug-fix ``` #### 3. 开发和测试 ```bash # 安装开发依赖 pip install -r requirements-dev.txt # 运行测试 pytest # 代码格式化 black src/ flake8 src/ # 类型检查 mypy src/ ``` #### 4. 提交更改 ```bash # 添加更改 git add . # 提交更改 git commit -m "feat: 添加新功能 详细描述新功能的内容和目的。" # 推送到个人仓库 git push origin feature/new-feature ``` #### 5. 创建Pull Request 1. 在GitHub上创建Pull Request 2. 填写PR模板 3. 等待代码审查 4. 根据反馈修改代码 5. 合并到主分支 ### 代码审查清单 #### 审查要点 - [ ] 代码符合项目编码规范 - [ ] 包含适当的测试用例 - [ ] 文档完整且准确 - [ ] 性能影响评估 - [ ] 安全性考虑 - [ ] 错误处理完善 - [ ] 向后兼容性 #### PR模板 ```markdown ## 变更描述 简要描述此PR的目的和内容。 ## 变更类型 - [ ] Bug修复 - [ ] 新功能 - [ ] 文档更新 - [ ] 重构 - [ ] 性能优化 - [ ] 测试改进 ## 测试说明 描述如何测试此变更。 ## 相关问题 链接到相关的GitHub Issues。 ## 检查清单 - [ ] 代码自审查通过 - [ ] 所有测试通过 - [ ] 文档已更新 - [ ] 变更日志已更新 ``` ### 发布节奏 #### 发布周期 - **补丁版本**: 每2周(如有必要) - **次要版本**: 每4-6周 - **主要版本**: 每3-6个月 #### 发布冻结 - 发布前1周进入特性冻结期 - 只接受bug修复和安全更新 - 完成最终测试和文档更新 --- *最后更新: 2024年1月*