diff --git a/multiagent/multiagent/multiAgents.py b/multiagent/multiagent/multiAgents.py index a9abcc4..a1a6823 100644 --- a/multiagent/multiagent/multiAgents.py +++ b/multiagent/multiagent/multiAgents.py @@ -144,27 +144,96 @@ class MultiAgentSearchAgent(Agent): class MinimaxAgent(MultiAgentSearchAgent): """ - Your minimax agent (question 2) + Your minimax agent (question 2) """ - + def minimax(self,agentIndex,gameState,Depth): + if Depth >= self.depth * 2 or gameState.isWin() or gameState.isLose(): + return self.evaluationFunction(gameState) + if agentIndex == 0: + MAX = float("-inf") + pacmanActions = gameState.getLegalActions(agentIndex) + for each_action in pacmanActions: + successor_state = gameState.generateSuccessor(agentIndex, each_action) + value = self.minimax(1, successor_state, Depth + 1) + MAX = max(MAX, value) + return MAX + else: + values = [] + MIN = float("inf") + ghostActions = gameState.getLegalActions(agentIndex) + for each_action in ghostActions: + successor_state = gameState.generateSuccessor(agentIndex, each_action) + if agentIndex >= gameState.getNumAgents() - 1: + values.append(self.minimax(0, successor_state, Depth + 1)) + else: + values.append(self.minimax(agentIndex + 1, successor_state, Depth)) + value = min(values) + MIN = min(MIN, value) + return MIN def getAction(self, gameState): """ - Returns the minimax action from the current gameState using self.depth - and self.evaluationFunction. + Returns the minimax action from the current gameState using self.depth + and self.evaluationFunction. + + Here are some method calls that might be useful when implementing minimax. + + gameState.getLegalActions(agentIndex): + Returns a list of legal actions for an agent + agentIndex=0 means Pacman, ghosts are >= 1 - Here are some method calls that might be useful when implementing minimax. + gameState.generateSuccessor(agentIndex, action): + Returns the successor game state after an agent takes an action - gameState.getLegalActions(agentIndex): - Returns a list of legal actions for an agent - agentIndex=0 means Pacman, ghosts are >= 1 + gameState.getNumAgents(): + Returns the total number of agents in the game - gameState.generateSuccessor(agentIndex, action): - Returns the successor game state after an agent takes an action + gameState.isWin(): + Returns whether or not the game state is a winning state - gameState.getNumAgents(): - Returns the total number of agents in the game + gameState.isLose(): + Returns whether or not the game state is a losing state """ "*** YOUR CODE HERE ***" + ''' + GhostIndex = [i for i in range(1, gameState.getNumAgents())] + + def gameOver(state, d): + return state.isWin() or state.isLose() or d == self.depth + def min_value(state, d, ghost): # minimizer + + if gameOver(state, d): + return self.evaluationFunction(state) + + Beta = 10000000000000000 + for action in state.getLegalActions(ghost): + if ghost == GhostIndex[-1]: + Beta = min(Beta, max_value(state.generateSuccessor(ghost, action), d + 1)) + else: + Beta = min(Beta, min_value(state.generateSuccessor(ghost, action), d, ghost + 1)) + return Beta + + def max_value(state, d): # maximizer + if gameOver(state, d): + return self.evaluationFunction(state) + Alpha = -10000000000000000 + for action in state.getLegalActions(0): + Alpha = max(Alpha, min_value(state.generateSuccessor(0, action), d, 1)) + return Alpha + res = [(action, min_value(gameState.generateSuccessor(0, action), 0, 1)) for action in + gameState.getLegalActions(0)] + res.sort(key=lambda k: k[1]) + return res[-1][0] + ''' + + bestaction = "stop" + maxvalue = float('-inf') + for each_action in gameState.getLegalActions(0): + successor_state = gameState.generateSuccessor(0, each_action) + value = self.minimax(agentIndex=0, gameState=successor_state, Depth=0) + if value is not None and maxvalue < value: + maxvalue = value + bestaction = each_action + return bestaction util.raiseNotDefined() class AlphaBetaAgent(MultiAgentSearchAgent):