diff --git a/search/.idea/.gitignore b/search/.idea/.gitignore new file mode 100644 index 0000000..26d3352 --- /dev/null +++ b/search/.idea/.gitignore @@ -0,0 +1,3 @@ +# Default ignored files +/shelf/ +/workspace.xml diff --git a/search/.idea/inspectionProfiles/profiles_settings.xml b/search/.idea/inspectionProfiles/profiles_settings.xml new file mode 100644 index 0000000..105ce2d --- /dev/null +++ b/search/.idea/inspectionProfiles/profiles_settings.xml @@ -0,0 +1,6 @@ + + + + \ No newline at end of file diff --git a/search/.idea/misc.xml b/search/.idea/misc.xml new file mode 100644 index 0000000..7ba73c2 --- /dev/null +++ b/search/.idea/misc.xml @@ -0,0 +1,4 @@ + + + + \ No newline at end of file diff --git a/search/.idea/modules.xml b/search/.idea/modules.xml new file mode 100644 index 0000000..c3e7a57 --- /dev/null +++ b/search/.idea/modules.xml @@ -0,0 +1,8 @@ + + + + + + + + \ No newline at end of file diff --git a/search/.idea/search.iml b/search/.idea/search.iml new file mode 100644 index 0000000..86d1115 --- /dev/null +++ b/search/.idea/search.iml @@ -0,0 +1,12 @@ + + + + + + + + + + \ No newline at end of file diff --git a/search/.idea/vcs.xml b/search/.idea/vcs.xml new file mode 100644 index 0000000..584ca7f --- /dev/null +++ b/search/.idea/vcs.xml @@ -0,0 +1,7 @@ + + + + + + + \ No newline at end of file diff --git a/search/VERSION b/search/VERSION new file mode 100644 index 0000000..7c7fa2f --- /dev/null +++ b/search/VERSION @@ -0,0 +1 @@ +v1.001 diff --git a/search/autograder.py b/search/autograder.py new file mode 100644 index 0000000..4abe64d --- /dev/null +++ b/search/autograder.py @@ -0,0 +1,358 @@ +# autograder.py +# ------------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +# imports from python standard library +import grading +import imp +import optparse +import os +import re +import sys +import projectParams +import random +random.seed(0) +try: + from pacman import GameState +except: + pass + +# register arguments and set default values +def readCommand(argv): + parser = optparse.OptionParser(description = 'Run public tests on student code') + parser.set_defaults(generateSolutions=False, edxOutput=False, gsOutput=False, muteOutput=False, printTestCase=False, noGraphics=False) + parser.add_option('--test-directory', + dest = 'testRoot', + default = 'test_cases', + help = 'Root test directory which contains subdirectories corresponding to each question') + parser.add_option('--student-code', + dest = 'studentCode', + default = projectParams.STUDENT_CODE_DEFAULT, + help = 'comma separated list of student code files') + parser.add_option('--code-directory', + dest = 'codeRoot', + default = "", + help = 'Root directory containing the student and testClass code') + parser.add_option('--test-case-code', + dest = 'testCaseCode', + default = projectParams.PROJECT_TEST_CLASSES, + help = 'class containing testClass classes for this project') + parser.add_option('--generate-solutions', + dest = 'generateSolutions', + action = 'store_true', + help = 'Write solutions generated to .solution file') + parser.add_option('--edx-output', + dest = 'edxOutput', + action = 'store_true', + help = 'Generate edX output files') + parser.add_option('--gradescope-output', + dest = 'gsOutput', + action = 'store_true', + help = 'Generate GradeScope output files') + parser.add_option('--mute', + dest = 'muteOutput', + action = 'store_true', + help = 'Mute output from executing tests') + parser.add_option('--print-tests', '-p', + dest = 'printTestCase', + action = 'store_true', + help = 'Print each test case before running them.') + parser.add_option('--test', '-t', + dest = 'runTest', + default = None, + help = 'Run one particular test. Relative to test root.') + parser.add_option('--question', '-q', + dest = 'gradeQuestion', + default = None, + help = 'Grade one particular question.') + parser.add_option('--no-graphics', + dest = 'noGraphics', + action = 'store_true', + help = 'No graphics display for pacman games.') + (options, args) = parser.parse_args(argv) + return options + + +# confirm we should author solution files +def confirmGenerate(): + print 'WARNING: this action will overwrite any solution files.' + print 'Are you sure you want to proceed? (yes/no)' + while True: + ans = sys.stdin.readline().strip() + if ans == 'yes': + break + elif ans == 'no': + sys.exit(0) + else: + print 'please answer either "yes" or "no"' + + +# TODO: Fix this so that it tracebacks work correctly +# Looking at source of the traceback module, presuming it works +# the same as the intepreters, it uses co_filename. This is, +# however, a readonly attribute. +def setModuleName(module, filename): + functionType = type(confirmGenerate) + classType = type(optparse.Option) + + for i in dir(module): + o = getattr(module, i) + if hasattr(o, '__file__'): continue + + if type(o) == functionType: + setattr(o, '__file__', filename) + elif type(o) == classType: + setattr(o, '__file__', filename) + # TODO: assign member __file__'s? + #print i, type(o) + + +#from cStringIO import StringIO + +def loadModuleString(moduleSource): + # Below broken, imp doesn't believe its being passed a file: + # ValueError: load_module arg#2 should be a file or None + # + #f = StringIO(moduleCodeDict[k]) + #tmp = imp.load_module(k, f, k, (".py", "r", imp.PY_SOURCE)) + tmp = imp.new_module(k) + exec moduleCodeDict[k] in tmp.__dict__ + setModuleName(tmp, k) + return tmp + +import py_compile + +def loadModuleFile(moduleName, filePath): + with open(filePath, 'r') as f: + return imp.load_module(moduleName, f, "%s.py" % moduleName, (".py", "r", imp.PY_SOURCE)) + + +def readFile(path, root=""): + "Read file from disk at specified path and return as string" + with open(os.path.join(root, path), 'r') as handle: + return handle.read() + + +####################################################################### +# Error Hint Map +####################################################################### + +# TODO: use these +ERROR_HINT_MAP = { + 'q1': { + "": """ + We noticed that your project threw an IndexError on q1. + While many things may cause this, it may have been from + assuming a certain number of successors from a state space + or assuming a certain number of actions available from a given + state. Try making your code more general (no hardcoded indices) + and submit again! + """ + }, + 'q3': { + "": """ + We noticed that your project threw an AttributeError on q3. + While many things may cause this, it may have been from assuming + a certain size or structure to the state space. For example, if you have + a line of code assuming that the state is (x, y) and we run your code + on a state space with (x, y, z), this error could be thrown. Try + making your code more general and submit again! + + """ + } +} + +import pprint + +def splitStrings(d): + d2 = dict(d) + for k in d: + if k[0:2] == "__": + del d2[k] + continue + if d2[k].find("\n") >= 0: + d2[k] = d2[k].split("\n") + return d2 + + +def printTest(testDict, solutionDict): + pp = pprint.PrettyPrinter(indent=4) + print "Test case:" + for line in testDict["__raw_lines__"]: + print " |", line + print "Solution:" + for line in solutionDict["__raw_lines__"]: + print " |", line + + +def runTest(testName, moduleDict, printTestCase=False, display=None): + import testParser + import testClasses + for module in moduleDict: + setattr(sys.modules[__name__], module, moduleDict[module]) + + testDict = testParser.TestParser(testName + ".test").parse() + solutionDict = testParser.TestParser(testName + ".solution").parse() + test_out_file = os.path.join('%s.test_output' % testName) + testDict['test_out_file'] = test_out_file + testClass = getattr(projectTestClasses, testDict['class']) + + questionClass = getattr(testClasses, 'Question') + question = questionClass({'max_points': 0}, display) + testCase = testClass(question, testDict) + + if printTestCase: + printTest(testDict, solutionDict) + + # This is a fragile hack to create a stub grades object + grades = grading.Grades(projectParams.PROJECT_NAME, [(None,0)]) + testCase.execute(grades, moduleDict, solutionDict) + + +# returns all the tests you need to run in order to run question +def getDepends(testParser, testRoot, question): + allDeps = [question] + questionDict = testParser.TestParser(os.path.join(testRoot, question, 'CONFIG')).parse() + if 'depends' in questionDict: + depends = questionDict['depends'].split() + for d in depends: + # run dependencies first + allDeps = getDepends(testParser, testRoot, d) + allDeps + return allDeps + +# get list of questions to grade +def getTestSubdirs(testParser, testRoot, questionToGrade): + problemDict = testParser.TestParser(os.path.join(testRoot, 'CONFIG')).parse() + if questionToGrade != None: + questions = getDepends(testParser, testRoot, questionToGrade) + if len(questions) > 1: + print 'Note: due to dependencies, the following tests will be run: %s' % ' '.join(questions) + return questions + if 'order' in problemDict: + return problemDict['order'].split() + return sorted(os.listdir(testRoot)) + + +# evaluate student code +def evaluate(generateSolutions, testRoot, moduleDict, exceptionMap=ERROR_HINT_MAP, + edxOutput=False, muteOutput=False, gsOutput=False, + printTestCase=False, questionToGrade=None, display=None): + # imports of testbench code. note that the testClasses import must follow + # the import of student code due to dependencies + import testParser + import testClasses + for module in moduleDict: + setattr(sys.modules[__name__], module, moduleDict[module]) + + questions = [] + questionDicts = {} + test_subdirs = getTestSubdirs(testParser, testRoot, questionToGrade) + for q in test_subdirs: + subdir_path = os.path.join(testRoot, q) + if not os.path.isdir(subdir_path) or q[0] == '.': + continue + + # create a question object + questionDict = testParser.TestParser(os.path.join(subdir_path, 'CONFIG')).parse() + questionClass = getattr(testClasses, questionDict['class']) + question = questionClass(questionDict, display) + questionDicts[q] = questionDict + + # load test cases into question + tests = filter(lambda t: re.match('[^#~.].*\.test\Z', t), os.listdir(subdir_path)) + tests = map(lambda t: re.match('(.*)\.test\Z', t).group(1), tests) + for t in sorted(tests): + test_file = os.path.join(subdir_path, '%s.test' % t) + solution_file = os.path.join(subdir_path, '%s.solution' % t) + test_out_file = os.path.join(subdir_path, '%s.test_output' % t) + testDict = testParser.TestParser(test_file).parse() + if testDict.get("disabled", "false").lower() == "true": + continue + testDict['test_out_file'] = test_out_file + testClass = getattr(projectTestClasses, testDict['class']) + testCase = testClass(question, testDict) + def makefun(testCase, solution_file): + if generateSolutions: + # write solution file to disk + return lambda grades: testCase.writeSolution(moduleDict, solution_file) + else: + # read in solution dictionary and pass as an argument + testDict = testParser.TestParser(test_file).parse() + solutionDict = testParser.TestParser(solution_file).parse() + if printTestCase: + return lambda grades: printTest(testDict, solutionDict) or testCase.execute(grades, moduleDict, solutionDict) + else: + return lambda grades: testCase.execute(grades, moduleDict, solutionDict) + question.addTestCase(testCase, makefun(testCase, solution_file)) + + # Note extra function is necessary for scoping reasons + def makefun(question): + return lambda grades: question.execute(grades) + setattr(sys.modules[__name__], q, makefun(question)) + questions.append((q, question.getMaxPoints())) + + grades = grading.Grades(projectParams.PROJECT_NAME, questions, + gsOutput=gsOutput, edxOutput=edxOutput, muteOutput=muteOutput) + if questionToGrade == None: + for q in questionDicts: + for prereq in questionDicts[q].get('depends', '').split(): + grades.addPrereq(q, prereq) + + grades.grade(sys.modules[__name__], bonusPic = projectParams.BONUS_PIC) + return grades.points + + + +def getDisplay(graphicsByDefault, options=None): + graphics = graphicsByDefault + if options is not None and options.noGraphics: + graphics = False + if graphics: + try: + import graphicsDisplay + return graphicsDisplay.PacmanGraphics(1, frameTime=.05) + except ImportError: + pass + import textDisplay + return textDisplay.NullGraphics() + + + + +if __name__ == '__main__': + options = readCommand(sys.argv) + if options.generateSolutions: + confirmGenerate() + codePaths = options.studentCode.split(',') + # moduleCodeDict = {} + # for cp in codePaths: + # moduleName = re.match('.*?([^/]*)\.py', cp).group(1) + # moduleCodeDict[moduleName] = readFile(cp, root=options.codeRoot) + # moduleCodeDict['projectTestClasses'] = readFile(options.testCaseCode, root=options.codeRoot) + # moduleDict = loadModuleDict(moduleCodeDict) + + moduleDict = {} + for cp in codePaths: + moduleName = re.match('.*?([^/]*)\.py', cp).group(1) + moduleDict[moduleName] = loadModuleFile(moduleName, os.path.join(options.codeRoot, cp)) + moduleName = re.match('.*?([^/]*)\.py', options.testCaseCode).group(1) + moduleDict['projectTestClasses'] = loadModuleFile(moduleName, os.path.join(options.codeRoot, options.testCaseCode)) + + + if options.runTest != None: + runTest(options.runTest, moduleDict, printTestCase=options.printTestCase, display=getDisplay(True, options)) + else: + evaluate(options.generateSolutions, options.testRoot, moduleDict, + gsOutput=options.gsOutput, + edxOutput=options.edxOutput, muteOutput=options.muteOutput, printTestCase=options.printTestCase, + questionToGrade=options.gradeQuestion, display=getDisplay(options.gradeQuestion!=None, options)) diff --git a/search/commands.txt b/search/commands.txt new file mode 100644 index 0000000..d5c70e2 --- /dev/null +++ b/search/commands.txt @@ -0,0 +1,22 @@ +python pacman.py +python pacman.py --layout testMaze --pacman GoWestAgent +python pacman.py --layout tinyMaze --pacman GoWestAgent +python pacman.py -h +python pacman.py -l tinyMaze -p SearchAgent -a fn=tinyMazeSearch +python pacman.py -l tinyMaze -p SearchAgent +python pacman.py -l mediumMaze -p SearchAgent +python pacman.py -l bigMaze -z .5 -p SearchAgent +python pacman.py -l mediumMaze -p SearchAgent -a fn=bfs +python pacman.py -l bigMaze -p SearchAgent -a fn=bfs -z .5 +python eightpuzzle.py +python pacman.py -l mediumMaze -p SearchAgent -a fn=ucs +python pacman.py -l mediumDottedMaze -p StayEastSearchAgent +python pacman.py -l mediumScaryMaze -p StayWestSearchAgent +python pacman.py -l bigMaze -z .5 -p SearchAgent -a fn=astar,heuristic=manhattanHeuristic +python pacman.py -l tinyCorners -p SearchAgent -a fn=bfs,prob=CornersProblem +python pacman.py -l mediumCorners -p SearchAgent -a fn=bfs,prob=CornersProblem +python pacman.py -l mediumCorners -p AStarCornersAgent -z 0.5 +python pacman.py -l testSearch -p AStarFoodSearchAgent +python pacman.py -l trickySearch -p AStarFoodSearchAgent +python pacman.py -l bigSearch -p ClosestDotSearchAgent -z .5 +python pacman.py -l bigSearch -p ApproximateSearchAgent -z .5 -q diff --git a/search/eightpuzzle.py b/search/eightpuzzle.py new file mode 100644 index 0000000..6aa376c --- /dev/null +++ b/search/eightpuzzle.py @@ -0,0 +1,281 @@ +# eightpuzzle.py +# -------------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +import search +import random + +# Module Classes + +class EightPuzzleState: + """ + The Eight Puzzle is described in the course textbook on + page 64. + + This class defines the mechanics of the puzzle itself. The + task of recasting this puzzle as a search problem is left to + the EightPuzzleSearchProblem class. + """ + + def __init__( self, numbers ): + """ + Constructs a new eight puzzle from an ordering of numbers. + + numbers: a list of integers from 0 to 8 representing an + instance of the eight puzzle. 0 represents the blank + space. Thus, the list + + [1, 0, 2, 3, 4, 5, 6, 7, 8] + + represents the eight puzzle: + ------------- + | 1 | | 2 | + ------------- + | 3 | 4 | 5 | + ------------- + | 6 | 7 | 8 | + ------------ + + The configuration of the puzzle is stored in a 2-dimensional + list (a list of lists) 'cells'. + """ + self.cells = [] + numbers = numbers[:] # Make a copy so as not to cause side-effects. + numbers.reverse() + for row in range( 3 ): + self.cells.append( [] ) + for col in range( 3 ): + self.cells[row].append( numbers.pop() ) + if self.cells[row][col] == 0: + self.blankLocation = row, col + + def isGoal( self ): + """ + Checks to see if the puzzle is in its goal state. + + ------------- + | | 1 | 2 | + ------------- + | 3 | 4 | 5 | + ------------- + | 6 | 7 | 8 | + ------------- + + >>> EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8]).isGoal() + True + + >>> EightPuzzleState([1, 0, 2, 3, 4, 5, 6, 7, 8]).isGoal() + False + """ + current = 0 + for row in range( 3 ): + for col in range( 3 ): + if current != self.cells[row][col]: + return False + current += 1 + return True + + def legalMoves( self ): + """ + Returns a list of legal moves from the current state. + + Moves consist of moving the blank space up, down, left or right. + These are encoded as 'up', 'down', 'left' and 'right' respectively. + + >>> EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8]).legalMoves() + ['down', 'right'] + """ + moves = [] + row, col = self.blankLocation + if(row != 0): + moves.append('up') + if(row != 2): + moves.append('down') + if(col != 0): + moves.append('left') + if(col != 2): + moves.append('right') + return moves + + def result(self, move): + """ + Returns a new eightPuzzle with the current state and blankLocation + updated based on the provided move. + + The move should be a string drawn from a list returned by legalMoves. + Illegal moves will raise an exception, which may be an array bounds + exception. + + NOTE: This function *does not* change the current object. Instead, + it returns a new object. + """ + row, col = self.blankLocation + if(move == 'up'): + newrow = row - 1 + newcol = col + elif(move == 'down'): + newrow = row + 1 + newcol = col + elif(move == 'left'): + newrow = row + newcol = col - 1 + elif(move == 'right'): + newrow = row + newcol = col + 1 + else: + raise "Illegal Move" + + # Create a copy of the current eightPuzzle + newPuzzle = EightPuzzleState([0, 0, 0, 0, 0, 0, 0, 0, 0]) + newPuzzle.cells = [values[:] for values in self.cells] + # And update it to reflect the move + newPuzzle.cells[row][col] = self.cells[newrow][newcol] + newPuzzle.cells[newrow][newcol] = self.cells[row][col] + newPuzzle.blankLocation = newrow, newcol + + return newPuzzle + + # Utilities for comparison and display + def __eq__(self, other): + """ + Overloads '==' such that two eightPuzzles with the same configuration + are equal. + + >>> EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8]) == \ + EightPuzzleState([1, 0, 2, 3, 4, 5, 6, 7, 8]).result('left') + True + """ + for row in range( 3 ): + if self.cells[row] != other.cells[row]: + return False + return True + + def __hash__(self): + return hash(str(self.cells)) + + def __getAsciiString(self): + """ + Returns a display string for the maze + """ + lines = [] + horizontalLine = ('-' * (13)) + lines.append(horizontalLine) + for row in self.cells: + rowLine = '|' + for col in row: + if col == 0: + col = ' ' + rowLine = rowLine + ' ' + col.__str__() + ' |' + lines.append(rowLine) + lines.append(horizontalLine) + return '\n'.join(lines) + + def __str__(self): + return self.__getAsciiString() + +# TODO: Implement The methods in this class + +class EightPuzzleSearchProblem(search.SearchProblem): + """ + Implementation of a SearchProblem for the Eight Puzzle domain + + Each state is represented by an instance of an eightPuzzle. + """ + def __init__(self,puzzle): + "Creates a new EightPuzzleSearchProblem which stores search information." + self.puzzle = puzzle + + def getStartState(self): + return puzzle + + def isGoalState(self,state): + return state.isGoal() + + def getSuccessors(self,state): + """ + Returns list of (successor, action, stepCost) pairs where + each succesor is either left, right, up, or down + from the original state and the cost is 1.0 for each + """ + succ = [] + for a in state.legalMoves(): + succ.append((state.result(a), a, 1)) + return succ + + def getCostOfActions(self, actions): + """ + actions: A list of actions to take + + This method returns the total cost of a particular sequence of actions. The sequence must + be composed of legal moves + """ + return len(actions) + +EIGHT_PUZZLE_DATA = [[1, 0, 2, 3, 4, 5, 6, 7, 8], + [1, 7, 8, 2, 3, 4, 5, 6, 0], + [4, 3, 2, 7, 0, 5, 1, 6, 8], + [5, 1, 3, 4, 0, 2, 6, 7, 8], + [1, 2, 5, 7, 6, 8, 0, 4, 3], + [0, 3, 1, 6, 8, 2, 7, 5, 4]] + +def loadEightPuzzle(puzzleNumber): + """ + puzzleNumber: The number of the eight puzzle to load. + + Returns an eight puzzle object generated from one of the + provided puzzles in EIGHT_PUZZLE_DATA. + + puzzleNumber can range from 0 to 5. + + >>> print loadEightPuzzle(0) + ------------- + | 1 | | 2 | + ------------- + | 3 | 4 | 5 | + ------------- + | 6 | 7 | 8 | + ------------- + """ + return EightPuzzleState(EIGHT_PUZZLE_DATA[puzzleNumber]) + +def createRandomEightPuzzle(moves=100): + """ + moves: number of random moves to apply + + Creates a random eight puzzle by applying + a series of 'moves' random moves to a solved + puzzle. + """ + puzzle = EightPuzzleState([0,1,2,3,4,5,6,7,8]) + for i in range(moves): + # Execute a random legal move + puzzle = puzzle.result(random.sample(puzzle.legalMoves(), 1)[0]) + return puzzle + +if __name__ == '__main__': + puzzle = createRandomEightPuzzle(25) + print('A random puzzle:') + print(puzzle) + + problem = EightPuzzleSearchProblem(puzzle) + path = search.breadthFirstSearch(problem) + print('BFS found a path of %d moves: %s' % (len(path), str(path))) + curr = puzzle + i = 1 + for a in path: + curr = curr.result(a) + print('After %d move%s: %s' % (i, ("", "s")[i>1], a)) + print(curr) + + raw_input("Press return for the next state...") # wait for key stroke + i += 1 diff --git a/search/game.py b/search/game.py new file mode 100644 index 0000000..e34d6cf --- /dev/null +++ b/search/game.py @@ -0,0 +1,729 @@ +# game.py +# ------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +# game.py +# ------- +# Licensing Information: Please do not distribute or publish solutions to this +# project. You are free to use and extend these projects for educational +# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by +# John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html + +from util import * +import time, os +import traceback +import sys + +####################### +# Parts worth reading # +####################### + +class Agent: + """ + An agent must define a getAction method, but may also define the + following methods which will be called if they exist: + + def registerInitialState(self, state): # inspects the starting state + """ + def __init__(self, index=0): + self.index = index + + def getAction(self, state): + """ + The Agent will receive a GameState (from either {pacman, capture, sonar}.py) and + must return an action from Directions.{North, South, East, West, Stop} + """ + raiseNotDefined() + +class Directions: + NORTH = 'North' + SOUTH = 'South' + EAST = 'East' + WEST = 'West' + STOP = 'Stop' + + LEFT = {NORTH: WEST, + SOUTH: EAST, + EAST: NORTH, + WEST: SOUTH, + STOP: STOP} + + RIGHT = dict([(y,x) for x, y in LEFT.items()]) + + REVERSE = {NORTH: SOUTH, + SOUTH: NORTH, + EAST: WEST, + WEST: EAST, + STOP: STOP} + +class Configuration: + """ + A Configuration holds the (x,y) coordinate of a character, along with its + traveling direction. + + The convention for positions, like a graph, is that (0,0) is the lower left corner, x increases + horizontally and y increases vertically. Therefore, north is the direction of increasing y, or (0,1). + """ + + def __init__(self, pos, direction): + self.pos = pos + self.direction = direction + + def getPosition(self): + return (self.pos) + + def getDirection(self): + return self.direction + + def isInteger(self): + x,y = self.pos + return x == int(x) and y == int(y) + + def __eq__(self, other): + if other == None: return False + return (self.pos == other.pos and self.direction == other.direction) + + def __hash__(self): + x = hash(self.pos) + y = hash(self.direction) + return hash(x + 13 * y) + + def __str__(self): + return "(x,y)="+str(self.pos)+", "+str(self.direction) + + def generateSuccessor(self, vector): + """ + Generates a new configuration reached by translating the current + configuration by the action vector. This is a low-level call and does + not attempt to respect the legality of the movement. + + Actions are movement vectors. + """ + x, y= self.pos + dx, dy = vector + direction = Actions.vectorToDirection(vector) + if direction == Directions.STOP: + direction = self.direction # There is no stop direction + return Configuration((x + dx, y+dy), direction) + +class AgentState: + """ + AgentStates hold the state of an agent (configuration, speed, scared, etc). + """ + + def __init__( self, startConfiguration, isPacman ): + self.start = startConfiguration + self.configuration = startConfiguration + self.isPacman = isPacman + self.scaredTimer = 0 + self.numCarrying = 0 + self.numReturned = 0 + + def __str__( self ): + if self.isPacman: + return "Pacman: " + str( self.configuration ) + else: + return "Ghost: " + str( self.configuration ) + + def __eq__( self, other ): + if other == None: + return False + return self.configuration == other.configuration and self.scaredTimer == other.scaredTimer + + def __hash__(self): + return hash(hash(self.configuration) + 13 * hash(self.scaredTimer)) + + def copy( self ): + state = AgentState( self.start, self.isPacman ) + state.configuration = self.configuration + state.scaredTimer = self.scaredTimer + state.numCarrying = self.numCarrying + state.numReturned = self.numReturned + return state + + def getPosition(self): + if self.configuration == None: return None + return self.configuration.getPosition() + + def getDirection(self): + return self.configuration.getDirection() + +class Grid: + """ + A 2-dimensional array of objects backed by a list of lists. Data is accessed + via grid[x][y] where (x,y) are positions on a Pacman map with x horizontal, + y vertical and the origin (0,0) in the bottom left corner. + + The __str__ method constructs an output that is oriented like a pacman board. + """ + def __init__(self, width, height, initialValue=False, bitRepresentation=None): + if initialValue not in [False, True]: raise Exception('Grids can only contain booleans') + self.CELLS_PER_INT = 30 + + self.width = width + self.height = height + self.data = [[initialValue for y in range(height)] for x in range(width)] + if bitRepresentation: + self._unpackBits(bitRepresentation) + + def __getitem__(self, i): + return self.data[i] + + def __setitem__(self, key, item): + self.data[key] = item + + def __str__(self): + out = [[str(self.data[x][y])[0] for x in range(self.width)] for y in range(self.height)] + out.reverse() + return '\n'.join([''.join(x) for x in out]) + + def __eq__(self, other): + if other == None: return False + return self.data == other.data + + def __hash__(self): + # return hash(str(self)) + base = 1 + h = 0 + for l in self.data: + for i in l: + if i: + h += base + base *= 2 + return hash(h) + + def copy(self): + g = Grid(self.width, self.height) + g.data = [x[:] for x in self.data] + return g + + def deepCopy(self): + return self.copy() + + def shallowCopy(self): + g = Grid(self.width, self.height) + g.data = self.data + return g + + def count(self, item =True ): + return sum([x.count(item) for x in self.data]) + + def asList(self, key = True): + list = [] + for x in range(self.width): + for y in range(self.height): + if self[x][y] == key: list.append( (x,y) ) + return list + + def packBits(self): + """ + Returns an efficient int list representation + + (width, height, bitPackedInts...) + """ + bits = [self.width, self.height] + currentInt = 0 + for i in range(self.height * self.width): + bit = self.CELLS_PER_INT - (i % self.CELLS_PER_INT) - 1 + x, y = self._cellIndexToPosition(i) + if self[x][y]: + currentInt += 2 ** bit + if (i + 1) % self.CELLS_PER_INT == 0: + bits.append(currentInt) + currentInt = 0 + bits.append(currentInt) + return tuple(bits) + + def _cellIndexToPosition(self, index): + x = index / self.height + y = index % self.height + return x, y + + def _unpackBits(self, bits): + """ + Fills in data from a bit-level representation + """ + cell = 0 + for packed in bits: + for bit in self._unpackInt(packed, self.CELLS_PER_INT): + if cell == self.width * self.height: break + x, y = self._cellIndexToPosition(cell) + self[x][y] = bit + cell += 1 + + def _unpackInt(self, packed, size): + bools = [] + if packed < 0: raise ValueError, "must be a positive integer" + for i in range(size): + n = 2 ** (self.CELLS_PER_INT - i - 1) + if packed >= n: + bools.append(True) + packed -= n + else: + bools.append(False) + return bools + +def reconstituteGrid(bitRep): + if type(bitRep) is not type((1,2)): + return bitRep + width, height = bitRep[:2] + return Grid(width, height, bitRepresentation= bitRep[2:]) + +#################################### +# Parts you shouldn't have to read # +#################################### + +class Actions: + """ + A collection of static methods for manipulating move actions. + """ + # Directions + _directions = {Directions.NORTH: (0, 1), + Directions.SOUTH: (0, -1), + Directions.EAST: (1, 0), + Directions.WEST: (-1, 0), + Directions.STOP: (0, 0)} + + _directionsAsList = _directions.items() + + TOLERANCE = .001 + + def reverseDirection(action): + if action == Directions.NORTH: + return Directions.SOUTH + if action == Directions.SOUTH: + return Directions.NORTH + if action == Directions.EAST: + return Directions.WEST + if action == Directions.WEST: + return Directions.EAST + return action + reverseDirection = staticmethod(reverseDirection) + + def vectorToDirection(vector): + dx, dy = vector + if dy > 0: + return Directions.NORTH + if dy < 0: + return Directions.SOUTH + if dx < 0: + return Directions.WEST + if dx > 0: + return Directions.EAST + return Directions.STOP + vectorToDirection = staticmethod(vectorToDirection) + + def directionToVector(direction, speed = 1.0): + dx, dy = Actions._directions[direction] + return (dx * speed, dy * speed) + directionToVector = staticmethod(directionToVector) + + def getPossibleActions(config, walls): + possible = [] + x, y = config.pos + x_int, y_int = int(x + 0.5), int(y + 0.5) + + # In between grid points, all agents must continue straight + if (abs(x - x_int) + abs(y - y_int) > Actions.TOLERANCE): + return [config.getDirection()] + + for dir, vec in Actions._directionsAsList: + dx, dy = vec + next_y = y_int + dy + next_x = x_int + dx + if not walls[next_x][next_y]: possible.append(dir) + + return possible + + getPossibleActions = staticmethod(getPossibleActions) + + def getLegalNeighbors(position, walls): + x,y = position + x_int, y_int = int(x + 0.5), int(y + 0.5) + neighbors = [] + for dir, vec in Actions._directionsAsList: + dx, dy = vec + next_x = x_int + dx + if next_x < 0 or next_x == walls.width: continue + next_y = y_int + dy + if next_y < 0 or next_y == walls.height: continue + if not walls[next_x][next_y]: neighbors.append((next_x, next_y)) + return neighbors + getLegalNeighbors = staticmethod(getLegalNeighbors) + + def getSuccessor(position, action): + dx, dy = Actions.directionToVector(action) + x, y = position + return (x + dx, y + dy) + getSuccessor = staticmethod(getSuccessor) + +class GameStateData: + """ + + """ + def __init__( self, prevState = None ): + """ + Generates a new data packet by copying information from its predecessor. + """ + if prevState != None: + self.food = prevState.food.shallowCopy() + self.capsules = prevState.capsules[:] + self.agentStates = self.copyAgentStates( prevState.agentStates ) + self.layout = prevState.layout + self._eaten = prevState._eaten + self.score = prevState.score + + self._foodEaten = None + self._foodAdded = None + self._capsuleEaten = None + self._agentMoved = None + self._lose = False + self._win = False + self.scoreChange = 0 + + def deepCopy( self ): + state = GameStateData( self ) + state.food = self.food.deepCopy() + state.layout = self.layout.deepCopy() + state._agentMoved = self._agentMoved + state._foodEaten = self._foodEaten + state._foodAdded = self._foodAdded + state._capsuleEaten = self._capsuleEaten + return state + + def copyAgentStates( self, agentStates ): + copiedStates = [] + for agentState in agentStates: + copiedStates.append( agentState.copy() ) + return copiedStates + + def __eq__( self, other ): + """ + Allows two states to be compared. + """ + if other == None: return False + # TODO Check for type of other + if not self.agentStates == other.agentStates: return False + if not self.food == other.food: return False + if not self.capsules == other.capsules: return False + if not self.score == other.score: return False + return True + + def __hash__( self ): + """ + Allows states to be keys of dictionaries. + """ + for i, state in enumerate( self.agentStates ): + try: + int(hash(state)) + except TypeError, e: + print e + #hash(state) + return int((hash(tuple(self.agentStates)) + 13*hash(self.food) + 113* hash(tuple(self.capsules)) + 7 * hash(self.score)) % 1048575 ) + + def __str__( self ): + width, height = self.layout.width, self.layout.height + map = Grid(width, height) + if type(self.food) == type((1,2)): + self.food = reconstituteGrid(self.food) + for x in range(width): + for y in range(height): + food, walls = self.food, self.layout.walls + map[x][y] = self._foodWallStr(food[x][y], walls[x][y]) + + for agentState in self.agentStates: + if agentState == None: continue + if agentState.configuration == None: continue + x,y = [int( i ) for i in nearestPoint( agentState.configuration.pos )] + agent_dir = agentState.configuration.direction + if agentState.isPacman: + map[x][y] = self._pacStr( agent_dir ) + else: + map[x][y] = self._ghostStr( agent_dir ) + + for x, y in self.capsules: + map[x][y] = 'o' + + return str(map) + ("\nScore: %d\n" % self.score) + + def _foodWallStr( self, hasFood, hasWall ): + if hasFood: + return '.' + elif hasWall: + return '%' + else: + return ' ' + + def _pacStr( self, dir ): + if dir == Directions.NORTH: + return 'v' + if dir == Directions.SOUTH: + return '^' + if dir == Directions.WEST: + return '>' + return '<' + + def _ghostStr( self, dir ): + return 'G' + if dir == Directions.NORTH: + return 'M' + if dir == Directions.SOUTH: + return 'W' + if dir == Directions.WEST: + return '3' + return 'E' + + def initialize( self, layout, numGhostAgents ): + """ + Creates an initial game state from a layout array (see layout.py). + """ + self.food = layout.food.copy() + #self.capsules = [] + self.capsules = layout.capsules[:] + self.layout = layout + self.score = 0 + self.scoreChange = 0 + + self.agentStates = [] + numGhosts = 0 + for isPacman, pos in layout.agentPositions: + if not isPacman: + if numGhosts == numGhostAgents: continue # Max ghosts reached already + else: numGhosts += 1 + self.agentStates.append( AgentState( Configuration( pos, Directions.STOP), isPacman) ) + self._eaten = [False for a in self.agentStates] + +try: + import boinc + _BOINC_ENABLED = True +except: + _BOINC_ENABLED = False + +class Game: + """ + The Game manages the control flow, soliciting actions from agents. + """ + + def __init__( self, agents, display, rules, startingIndex=0, muteAgents=False, catchExceptions=False ): + self.agentCrashed = False + self.agents = agents + self.display = display + self.rules = rules + self.startingIndex = startingIndex + self.gameOver = False + self.muteAgents = muteAgents + self.catchExceptions = catchExceptions + self.moveHistory = [] + self.totalAgentTimes = [0 for agent in agents] + self.totalAgentTimeWarnings = [0 for agent in agents] + self.agentTimeout = False + import cStringIO + self.agentOutput = [cStringIO.StringIO() for agent in agents] + + def getProgress(self): + if self.gameOver: + return 1.0 + else: + return self.rules.getProgress(self) + + def _agentCrash( self, agentIndex, quiet=False): + "Helper method for handling agent crashes" + if not quiet: traceback.print_exc() + self.gameOver = True + self.agentCrashed = True + self.rules.agentCrash(self, agentIndex) + + OLD_STDOUT = None + OLD_STDERR = None + + def mute(self, agentIndex): + if not self.muteAgents: return + global OLD_STDOUT, OLD_STDERR + import cStringIO + OLD_STDOUT = sys.stdout + OLD_STDERR = sys.stderr + sys.stdout = self.agentOutput[agentIndex] + sys.stderr = self.agentOutput[agentIndex] + + def unmute(self): + if not self.muteAgents: return + global OLD_STDOUT, OLD_STDERR + # Revert stdout/stderr to originals + sys.stdout = OLD_STDOUT + sys.stderr = OLD_STDERR + + + def run( self ): + """ + Main control loop for game play. + """ + self.display.initialize(self.state.data) + self.numMoves = 0 + + ###self.display.initialize(self.state.makeObservation(1).data) + # inform learning agents of the game start + for i in range(len(self.agents)): + agent = self.agents[i] + if not agent: + self.mute(i) + # this is a null agent, meaning it failed to load + # the other team wins + print >>sys.stderr, "Agent %d failed to load" % i + self.unmute() + self._agentCrash(i, quiet=True) + return + if ("registerInitialState" in dir(agent)): + self.mute(i) + if self.catchExceptions: + try: + timed_func = TimeoutFunction(agent.registerInitialState, int(self.rules.getMaxStartupTime(i))) + try: + start_time = time.time() + timed_func(self.state.deepCopy()) + time_taken = time.time() - start_time + self.totalAgentTimes[i] += time_taken + except TimeoutFunctionException: + print >>sys.stderr, "Agent %d ran out of time on startup!" % i + self.unmute() + self.agentTimeout = True + self._agentCrash(i, quiet=True) + return + except Exception,data: + self._agentCrash(i, quiet=False) + self.unmute() + return + else: + agent.registerInitialState(self.state.deepCopy()) + ## TODO: could this exceed the total time + self.unmute() + + agentIndex = self.startingIndex + numAgents = len( self.agents ) + + while not self.gameOver: + # Fetch the next agent + agent = self.agents[agentIndex] + move_time = 0 + skip_action = False + # Generate an observation of the state + if 'observationFunction' in dir( agent ): + self.mute(agentIndex) + if self.catchExceptions: + try: + timed_func = TimeoutFunction(agent.observationFunction, int(self.rules.getMoveTimeout(agentIndex))) + try: + start_time = time.time() + observation = timed_func(self.state.deepCopy()) + except TimeoutFunctionException: + skip_action = True + move_time += time.time() - start_time + self.unmute() + except Exception,data: + self._agentCrash(agentIndex, quiet=False) + self.unmute() + return + else: + observation = agent.observationFunction(self.state.deepCopy()) + self.unmute() + else: + observation = self.state.deepCopy() + + # Solicit an action + action = None + self.mute(agentIndex) + if self.catchExceptions: + try: + timed_func = TimeoutFunction(agent.getAction, int(self.rules.getMoveTimeout(agentIndex)) - int(move_time)) + try: + start_time = time.time() + if skip_action: + raise TimeoutFunctionException() + action = timed_func( observation ) + except TimeoutFunctionException: + print >>sys.stderr, "Agent %d timed out on a single move!" % agentIndex + self.agentTimeout = True + self._agentCrash(agentIndex, quiet=True) + self.unmute() + return + + move_time += time.time() - start_time + + if move_time > self.rules.getMoveWarningTime(agentIndex): + self.totalAgentTimeWarnings[agentIndex] += 1 + print >>sys.stderr, "Agent %d took too long to make a move! This is warning %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex]) + if self.totalAgentTimeWarnings[agentIndex] > self.rules.getMaxTimeWarnings(agentIndex): + print >>sys.stderr, "Agent %d exceeded the maximum number of warnings: %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex]) + self.agentTimeout = True + self._agentCrash(agentIndex, quiet=True) + self.unmute() + return + + self.totalAgentTimes[agentIndex] += move_time + #print "Agent: %d, time: %f, total: %f" % (agentIndex, move_time, self.totalAgentTimes[agentIndex]) + if self.totalAgentTimes[agentIndex] > self.rules.getMaxTotalTime(agentIndex): + print >>sys.stderr, "Agent %d ran out of time! (time: %1.2f)" % (agentIndex, self.totalAgentTimes[agentIndex]) + self.agentTimeout = True + self._agentCrash(agentIndex, quiet=True) + self.unmute() + return + self.unmute() + except Exception,data: + self._agentCrash(agentIndex) + self.unmute() + return + else: + action = agent.getAction(observation) + self.unmute() + + # Execute the action + self.moveHistory.append( (agentIndex, action) ) + if self.catchExceptions: + try: + self.state = self.state.generateSuccessor( agentIndex, action ) + except Exception,data: + self.mute(agentIndex) + self._agentCrash(agentIndex) + self.unmute() + return + else: + self.state = self.state.generateSuccessor( agentIndex, action ) + + # Change the display + self.display.update( self.state.data ) + ###idx = agentIndex - agentIndex % 2 + 1 + ###self.display.update( self.state.makeObservation(idx).data ) + + # Allow for game specific conditions (winning, losing, etc.) + self.rules.process(self.state, self) + # Track progress + if agentIndex == numAgents + 1: self.numMoves += 1 + # Next agent + agentIndex = ( agentIndex + 1 ) % numAgents + + if _BOINC_ENABLED: + boinc.set_fraction_done(self.getProgress()) + + # inform a learning agent of the game result + for agentIndex, agent in enumerate(self.agents): + if "final" in dir( agent ) : + try: + self.mute(agentIndex) + agent.final( self.state ) + self.unmute() + except Exception,data: + if not self.catchExceptions: raise + self._agentCrash(agentIndex) + self.unmute() + return + self.display.finish() diff --git a/search/game.pyc b/search/game.pyc new file mode 100644 index 0000000..65e17d8 Binary files /dev/null and b/search/game.pyc differ diff --git a/search/ghostAgents.py b/search/ghostAgents.py new file mode 100644 index 0000000..c3afe1f --- /dev/null +++ b/search/ghostAgents.py @@ -0,0 +1,81 @@ +# ghostAgents.py +# -------------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +from game import Agent +from game import Actions +from game import Directions +import random +from util import manhattanDistance +import util + +class GhostAgent( Agent ): + def __init__( self, index ): + self.index = index + + def getAction( self, state ): + dist = self.getDistribution(state) + if len(dist) == 0: + return Directions.STOP + else: + return util.chooseFromDistribution( dist ) + + def getDistribution(self, state): + "Returns a Counter encoding a distribution over actions from the provided state." + util.raiseNotDefined() + +class RandomGhost( GhostAgent ): + "A ghost that chooses a legal action uniformly at random." + def getDistribution( self, state ): + dist = util.Counter() + for a in state.getLegalActions( self.index ): dist[a] = 1.0 + dist.normalize() + return dist + +class DirectionalGhost( GhostAgent ): + "A ghost that prefers to rush Pacman, or flee when scared." + def __init__( self, index, prob_attack=0.8, prob_scaredFlee=0.8 ): + self.index = index + self.prob_attack = prob_attack + self.prob_scaredFlee = prob_scaredFlee + + def getDistribution( self, state ): + # Read variables from state + ghostState = state.getGhostState( self.index ) + legalActions = state.getLegalActions( self.index ) + pos = state.getGhostPosition( self.index ) + isScared = ghostState.scaredTimer > 0 + + speed = 1 + if isScared: speed = 0.5 + + actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions] + newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors] + pacmanPosition = state.getPacmanPosition() + + # Select best actions given the state + distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions] + if isScared: + bestScore = max( distancesToPacman ) + bestProb = self.prob_scaredFlee + else: + bestScore = min( distancesToPacman ) + bestProb = self.prob_attack + bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore] + + # Construct distribution + dist = util.Counter() + for a in bestActions: dist[a] = bestProb / len(bestActions) + for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions) + dist.normalize() + return dist diff --git a/search/ghostAgents.pyc b/search/ghostAgents.pyc new file mode 100644 index 0000000..c46287f Binary files /dev/null and b/search/ghostAgents.pyc differ diff --git a/search/grading.py b/search/grading.py new file mode 100644 index 0000000..b63c877 --- /dev/null +++ b/search/grading.py @@ -0,0 +1,323 @@ +# grading.py +# ---------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +"Common code for autograders" + +import cgi +import time +import sys +import json +import traceback +import pdb +from collections import defaultdict +import util + +class Grades: + "A data structure for project grades, along with formatting code to display them" + def __init__(self, projectName, questionsAndMaxesList, + gsOutput=False, edxOutput=False, muteOutput=False): + """ + Defines the grading scheme for a project + projectName: project name + questionsAndMaxesDict: a list of (question name, max points per question) + """ + self.questions = [el[0] for el in questionsAndMaxesList] + self.maxes = dict(questionsAndMaxesList) + self.points = Counter() + self.messages = dict([(q, []) for q in self.questions]) + self.project = projectName + self.start = time.localtime()[1:6] + self.sane = True # Sanity checks + self.currentQuestion = None # Which question we're grading + self.edxOutput = edxOutput + self.gsOutput = gsOutput # GradeScope output + self.mute = muteOutput + self.prereqs = defaultdict(set) + + #print 'Autograder transcript for %s' % self.project + print 'Starting on %d-%d at %d:%02d:%02d' % self.start + + def addPrereq(self, question, prereq): + self.prereqs[question].add(prereq) + + def grade(self, gradingModule, exceptionMap = {}, bonusPic = False): + """ + Grades each question + gradingModule: the module with all the grading functions (pass in with sys.modules[__name__]) + """ + + completedQuestions = set([]) + for q in self.questions: + print '\nQuestion %s' % q + print '=' * (9 + len(q)) + print + self.currentQuestion = q + + incompleted = self.prereqs[q].difference(completedQuestions) + if len(incompleted) > 0: + prereq = incompleted.pop() + print \ +"""*** NOTE: Make sure to complete Question %s before working on Question %s, +*** because Question %s builds upon your answer for Question %s. +""" % (prereq, q, q, prereq) + continue + + if self.mute: util.mutePrint() + try: + util.TimeoutFunction(getattr(gradingModule, q),1800)(self) # Call the question's function + #TimeoutFunction(getattr(gradingModule, q),1200)(self) # Call the question's function + except Exception, inst: + self.addExceptionMessage(q, inst, traceback) + self.addErrorHints(exceptionMap, inst, q[1]) + except: + self.fail('FAIL: Terminated with a string exception.') + finally: + if self.mute: util.unmutePrint() + + if self.points[q] >= self.maxes[q]: + completedQuestions.add(q) + + print '\n### Question %s: %d/%d ###\n' % (q, self.points[q], self.maxes[q]) + + + print '\nFinished at %d:%02d:%02d' % time.localtime()[3:6] + print "\nProvisional grades\n==================" + + for q in self.questions: + print 'Question %s: %d/%d' % (q, self.points[q], self.maxes[q]) + print '------------------' + print 'Total: %d/%d' % (self.points.totalCount(), sum(self.maxes.values())) + if bonusPic and self.points.totalCount() == 25: + print """ + + ALL HAIL GRANDPAC. + LONG LIVE THE GHOSTBUSTING KING. + + --- ---- --- + | \ / + \ / | + | + \--/ \--/ + | + | + + | + | + + + | + @@@@@@@@@@@@@@@@@@@@@@@@@@ + @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ + @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ + @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ + \ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ + \ / @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ + V \ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ + \ / @@@@@@@@@@@@@@@@@@@@@@@@@@ + V @@@@@@@@@@@@@@@@@@@@@@@@ + @@@@@@@@@@@@@@@@@@@@@@ + /\ @@@@@@@@@@@@@@@@@@@@@@ + / \ @@@@@@@@@@@@@@@@@@@@@@@@@ + /\ / @@@@@@@@@@@@@@@@@@@@@@@@@@@ + / \ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ + / @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ + @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ + @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ + @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ + @@@@@@@@@@@@@@@@@@@@@@@@@@ + @@@@@@@@@@@@@@@@@@ + +""" + print """ +Your grades are NOT yet registered. To register your grades, make sure +to follow your instructor's guidelines to receive credit on your project. +""" + + if self.edxOutput: + self.produceOutput() + if self.gsOutput: + self.produceGradeScopeOutput() + + def addExceptionMessage(self, q, inst, traceback): + """ + Method to format the exception message, this is more complicated because + we need to cgi.escape the traceback but wrap the exception in a
 tag
+    """
+    self.fail('FAIL: Exception raised: %s' % inst)
+    self.addMessage('')
+    for line in traceback.format_exc().split('\n'):
+        self.addMessage(line)
+
+  def addErrorHints(self, exceptionMap, errorInstance, questionNum):
+    typeOf = str(type(errorInstance))
+    questionName = 'q' + questionNum
+    errorHint = ''
+
+    # question specific error hints
+    if exceptionMap.get(questionName):
+      questionMap = exceptionMap.get(questionName)
+      if (questionMap.get(typeOf)):
+        errorHint = questionMap.get(typeOf)
+    # fall back to general error messages if a question specific
+    # one does not exist
+    if (exceptionMap.get(typeOf)):
+      errorHint = exceptionMap.get(typeOf)
+
+    # dont include the HTML if we have no error hint
+    if not errorHint:
+      return ''
+
+    for line in errorHint.split('\n'):
+      self.addMessage(line)
+
+  def produceGradeScopeOutput(self):
+    out_dct = {}
+
+    # total of entire submission
+    total_possible = sum(self.maxes.values())
+    total_score = sum(self.points.values())
+    out_dct['score'] = total_score
+    out_dct['max_score'] = total_possible
+    out_dct['output'] = "Total score (%d / %d)" % (total_score, total_possible)
+
+    # individual tests
+    tests_out = []
+    for name in self.questions:
+      test_out = {}
+      # test name
+      test_out['name'] = name
+      # test score
+      test_out['score'] = self.points[name]
+      test_out['max_score'] = self.maxes[name]
+      # others
+      is_correct = self.points[name] >= self.maxes[name]
+      test_out['output'] = "  Question {num} ({points}/{max}) {correct}".format(
+          num=(name[1] if len(name) == 2 else name),
+          points=test_out['score'],
+          max=test_out['max_score'],
+          correct=('X' if not is_correct else ''),
+      )
+      test_out['tags'] = []
+      tests_out.append(test_out)
+    out_dct['tests'] = tests_out
+
+    # file output
+    with open('gradescope_response.json', 'w') as outfile:
+        json.dump(out_dct, outfile)
+    return
+
+  def produceOutput(self):
+    edxOutput = open('edx_response.html', 'w')
+    edxOutput.write("
") + + # first sum + total_possible = sum(self.maxes.values()) + total_score = sum(self.points.values()) + checkOrX = '' + if (total_score >= total_possible): + checkOrX = '' + header = """ +

+ Total score ({total_score} / {total_possible}) +

+ """.format(total_score = total_score, + total_possible = total_possible, + checkOrX = checkOrX + ) + edxOutput.write(header) + + for q in self.questions: + if len(q) == 2: + name = q[1] + else: + name = q + checkOrX = '' + if (self.points[q] >= self.maxes[q]): + checkOrX = '' + #messages = '\n
\n'.join(self.messages[q]) + messages = "
%s
" % '\n'.join(self.messages[q]) + output = """ +
+
+
+ Question {q} ({points}/{max}) {checkOrX} +
+
+ {messages} +
+
+
+ """.format(q = name, + max = self.maxes[q], + messages = messages, + checkOrX = checkOrX, + points = self.points[q] + ) + # print "*** output for Question %s " % q[1] + # print output + edxOutput.write(output) + edxOutput.write("
") + edxOutput.close() + edxOutput = open('edx_grade', 'w') + edxOutput.write(str(self.points.totalCount())) + edxOutput.close() + + def fail(self, message, raw=False): + "Sets sanity check bit to false and outputs a message" + self.sane = False + self.assignZeroCredit() + self.addMessage(message, raw) + + def assignZeroCredit(self): + self.points[self.currentQuestion] = 0 + + def addPoints(self, amt): + self.points[self.currentQuestion] += amt + + def deductPoints(self, amt): + self.points[self.currentQuestion] -= amt + + def assignFullCredit(self, message="", raw=False): + self.points[self.currentQuestion] = self.maxes[self.currentQuestion] + if message != "": + self.addMessage(message, raw) + + def addMessage(self, message, raw=False): + if not raw: + # We assume raw messages, formatted for HTML, are printed separately + if self.mute: util.unmutePrint() + print '*** ' + message + if self.mute: util.mutePrint() + message = cgi.escape(message) + self.messages[self.currentQuestion].append(message) + + def addMessageToEmail(self, message): + print "WARNING**** addMessageToEmail is deprecated %s" % message + for line in message.split('\n'): + pass + #print '%%% ' + line + ' %%%' + #self.messages[self.currentQuestion].append(line) + + + + + +class Counter(dict): + """ + Dict with default 0 + """ + def __getitem__(self, idx): + try: + return dict.__getitem__(self, idx) + except KeyError: + return 0 + + def totalCount(self): + """ + Returns the sum of counts for all keys. + """ + return sum(self.values()) + diff --git a/search/graphicsDisplay.py b/search/graphicsDisplay.py new file mode 100644 index 0000000..1bfe1b3 --- /dev/null +++ b/search/graphicsDisplay.py @@ -0,0 +1,679 @@ +# graphicsDisplay.py +# ------------------ +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +from graphicsUtils import * +import math, time +from game import Directions + +########################### +# GRAPHICS DISPLAY CODE # +########################### + +# Most code by Dan Klein and John Denero written or rewritten for cs188, UC Berkeley. +# Some code from a Pacman implementation by LiveWires, and used / modified with permission. + +DEFAULT_GRID_SIZE = 30.0 +INFO_PANE_HEIGHT = 35 +BACKGROUND_COLOR = formatColor(0,0,0) +WALL_COLOR = formatColor(0.0/255.0, 51.0/255.0, 255.0/255.0) +INFO_PANE_COLOR = formatColor(.4,.4,0) +SCORE_COLOR = formatColor(.9, .9, .9) +PACMAN_OUTLINE_WIDTH = 2 +PACMAN_CAPTURE_OUTLINE_WIDTH = 4 + +GHOST_COLORS = [] +GHOST_COLORS.append(formatColor(.9,0,0)) # Red +GHOST_COLORS.append(formatColor(0,.3,.9)) # Blue +GHOST_COLORS.append(formatColor(.98,.41,.07)) # Orange +GHOST_COLORS.append(formatColor(.1,.75,.7)) # Green +GHOST_COLORS.append(formatColor(1.0,0.6,0.0)) # Yellow +GHOST_COLORS.append(formatColor(.4,0.13,0.91)) # Purple + +TEAM_COLORS = GHOST_COLORS[:2] + +GHOST_SHAPE = [ + ( 0, 0.3 ), + ( 0.25, 0.75 ), + ( 0.5, 0.3 ), + ( 0.75, 0.75 ), + ( 0.75, -0.5 ), + ( 0.5, -0.75 ), + (-0.5, -0.75 ), + (-0.75, -0.5 ), + (-0.75, 0.75 ), + (-0.5, 0.3 ), + (-0.25, 0.75 ) + ] +GHOST_SIZE = 0.65 +SCARED_COLOR = formatColor(1,1,1) + +GHOST_VEC_COLORS = map(colorToVector, GHOST_COLORS) + +PACMAN_COLOR = formatColor(255.0/255.0,255.0/255.0,61.0/255) +PACMAN_SCALE = 0.5 +#pacman_speed = 0.25 + +# Food +FOOD_COLOR = formatColor(1,1,1) +FOOD_SIZE = 0.1 + +# Laser +LASER_COLOR = formatColor(1,0,0) +LASER_SIZE = 0.02 + +# Capsule graphics +CAPSULE_COLOR = formatColor(1,1,1) +CAPSULE_SIZE = 0.25 + +# Drawing walls +WALL_RADIUS = 0.15 + +class InfoPane: + def __init__(self, layout, gridSize): + self.gridSize = gridSize + self.width = (layout.width) * gridSize + self.base = (layout.height + 1) * gridSize + self.height = INFO_PANE_HEIGHT + self.fontSize = 24 + self.textColor = PACMAN_COLOR + self.drawPane() + + def toScreen(self, pos, y = None): + """ + Translates a point relative from the bottom left of the info pane. + """ + if y == None: + x,y = pos + else: + x = pos + + x = self.gridSize + x # Margin + y = self.base + y + return x,y + + def drawPane(self): + self.scoreText = text( self.toScreen(0, 0 ), self.textColor, "SCORE: 0", "Times", self.fontSize, "bold") + + def initializeGhostDistances(self, distances): + self.ghostDistanceText = [] + + size = 20 + if self.width < 240: + size = 12 + if self.width < 160: + size = 10 + + for i, d in enumerate(distances): + t = text( self.toScreen(self.width/2 + self.width/8 * i, 0), GHOST_COLORS[i+1], d, "Times", size, "bold") + self.ghostDistanceText.append(t) + + def updateScore(self, score): + changeText(self.scoreText, "SCORE: % 4d" % score) + + def setTeam(self, isBlue): + text = "RED TEAM" + if isBlue: text = "BLUE TEAM" + self.teamText = text( self.toScreen(300, 0 ), self.textColor, text, "Times", self.fontSize, "bold") + + def updateGhostDistances(self, distances): + if len(distances) == 0: return + if 'ghostDistanceText' not in dir(self): self.initializeGhostDistances(distances) + else: + for i, d in enumerate(distances): + changeText(self.ghostDistanceText[i], d) + + def drawGhost(self): + pass + + def drawPacman(self): + pass + + def drawWarning(self): + pass + + def clearIcon(self): + pass + + def updateMessage(self, message): + pass + + def clearMessage(self): + pass + + +class PacmanGraphics: + def __init__(self, zoom=1.0, frameTime=0.0, capture=False): + self.have_window = 0 + self.currentGhostImages = {} + self.pacmanImage = None + self.zoom = zoom + self.gridSize = DEFAULT_GRID_SIZE * zoom + self.capture = capture + self.frameTime = frameTime + + def checkNullDisplay(self): + return False + + def initialize(self, state, isBlue = False): + self.isBlue = isBlue + self.startGraphics(state) + + # self.drawDistributions(state) + self.distributionImages = None # Initialized lazily + self.drawStaticObjects(state) + self.drawAgentObjects(state) + + # Information + self.previousState = state + + def startGraphics(self, state): + self.layout = state.layout + layout = self.layout + self.width = layout.width + self.height = layout.height + self.make_window(self.width, self.height) + self.infoPane = InfoPane(layout, self.gridSize) + self.currentState = layout + + def drawDistributions(self, state): + walls = state.layout.walls + dist = [] + for x in range(walls.width): + distx = [] + dist.append(distx) + for y in range(walls.height): + ( screen_x, screen_y ) = self.to_screen( (x, y) ) + block = square( (screen_x, screen_y), + 0.5 * self.gridSize, + color = BACKGROUND_COLOR, + filled = 1, behind=2) + distx.append(block) + self.distributionImages = dist + + def drawStaticObjects(self, state): + layout = self.layout + self.drawWalls(layout.walls) + self.food = self.drawFood(layout.food) + self.capsules = self.drawCapsules(layout.capsules) + refresh() + + def drawAgentObjects(self, state): + self.agentImages = [] # (agentState, image) + for index, agent in enumerate(state.agentStates): + if agent.isPacman: + image = self.drawPacman(agent, index) + self.agentImages.append( (agent, image) ) + else: + image = self.drawGhost(agent, index) + self.agentImages.append( (agent, image) ) + refresh() + + def swapImages(self, agentIndex, newState): + """ + Changes an image from a ghost to a pacman or vis versa (for capture) + """ + prevState, prevImage = self.agentImages[agentIndex] + for item in prevImage: remove_from_screen(item) + if newState.isPacman: + image = self.drawPacman(newState, agentIndex) + self.agentImages[agentIndex] = (newState, image ) + else: + image = self.drawGhost(newState, agentIndex) + self.agentImages[agentIndex] = (newState, image ) + refresh() + + def update(self, newState): + agentIndex = newState._agentMoved + agentState = newState.agentStates[agentIndex] + + if self.agentImages[agentIndex][0].isPacman != agentState.isPacman: self.swapImages(agentIndex, agentState) + prevState, prevImage = self.agentImages[agentIndex] + if agentState.isPacman: + self.animatePacman(agentState, prevState, prevImage) + else: + self.moveGhost(agentState, agentIndex, prevState, prevImage) + self.agentImages[agentIndex] = (agentState, prevImage) + + if newState._foodEaten != None: + self.removeFood(newState._foodEaten, self.food) + if newState._capsuleEaten != None: + self.removeCapsule(newState._capsuleEaten, self.capsules) + self.infoPane.updateScore(newState.score) + if 'ghostDistances' in dir(newState): + self.infoPane.updateGhostDistances(newState.ghostDistances) + + def make_window(self, width, height): + grid_width = (width-1) * self.gridSize + grid_height = (height-1) * self.gridSize + screen_width = 2*self.gridSize + grid_width + screen_height = 2*self.gridSize + grid_height + INFO_PANE_HEIGHT + + begin_graphics(screen_width, + screen_height, + BACKGROUND_COLOR, + "CS188 Pacman") + + def drawPacman(self, pacman, index): + position = self.getPosition(pacman) + screen_point = self.to_screen(position) + endpoints = self.getEndpoints(self.getDirection(pacman)) + + width = PACMAN_OUTLINE_WIDTH + outlineColor = PACMAN_COLOR + fillColor = PACMAN_COLOR + + if self.capture: + outlineColor = TEAM_COLORS[index % 2] + fillColor = GHOST_COLORS[index] + width = PACMAN_CAPTURE_OUTLINE_WIDTH + + return [circle(screen_point, PACMAN_SCALE * self.gridSize, + fillColor = fillColor, outlineColor = outlineColor, + endpoints = endpoints, + width = width)] + + def getEndpoints(self, direction, position=(0,0)): + x, y = position + pos = x - int(x) + y - int(y) + width = 30 + 80 * math.sin(math.pi* pos) + + delta = width / 2 + if (direction == 'West'): + endpoints = (180+delta, 180-delta) + elif (direction == 'North'): + endpoints = (90+delta, 90-delta) + elif (direction == 'South'): + endpoints = (270+delta, 270-delta) + else: + endpoints = (0+delta, 0-delta) + return endpoints + + def movePacman(self, position, direction, image): + screenPosition = self.to_screen(position) + endpoints = self.getEndpoints( direction, position ) + r = PACMAN_SCALE * self.gridSize + moveCircle(image[0], screenPosition, r, endpoints) + refresh() + + def animatePacman(self, pacman, prevPacman, image): + if self.frameTime < 0: + print 'Press any key to step forward, "q" to play' + keys = wait_for_keys() + if 'q' in keys: + self.frameTime = 0.1 + if self.frameTime > 0.01 or self.frameTime < 0: + start = time.time() + fx, fy = self.getPosition(prevPacman) + px, py = self.getPosition(pacman) + frames = 4.0 + for i in range(1,int(frames) + 1): + pos = px*i/frames + fx*(frames-i)/frames, py*i/frames + fy*(frames-i)/frames + self.movePacman(pos, self.getDirection(pacman), image) + refresh() + sleep(abs(self.frameTime) / frames) + else: + self.movePacman(self.getPosition(pacman), self.getDirection(pacman), image) + refresh() + + def getGhostColor(self, ghost, ghostIndex): + if ghost.scaredTimer > 0: + return SCARED_COLOR + else: + return GHOST_COLORS[ghostIndex] + + def drawGhost(self, ghost, agentIndex): + pos = self.getPosition(ghost) + dir = self.getDirection(ghost) + (screen_x, screen_y) = (self.to_screen(pos) ) + coords = [] + for (x, y) in GHOST_SHAPE: + coords.append((x*self.gridSize*GHOST_SIZE + screen_x, y*self.gridSize*GHOST_SIZE + screen_y)) + + colour = self.getGhostColor(ghost, agentIndex) + body = polygon(coords, colour, filled = 1) + WHITE = formatColor(1.0, 1.0, 1.0) + BLACK = formatColor(0.0, 0.0, 0.0) + + dx = 0 + dy = 0 + if dir == 'North': + dy = -0.2 + if dir == 'South': + dy = 0.2 + if dir == 'East': + dx = 0.2 + if dir == 'West': + dx = -0.2 + leftEye = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE) + rightEye = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE) + leftPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK) + rightPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK) + ghostImageParts = [] + ghostImageParts.append(body) + ghostImageParts.append(leftEye) + ghostImageParts.append(rightEye) + ghostImageParts.append(leftPupil) + ghostImageParts.append(rightPupil) + + return ghostImageParts + + def moveEyes(self, pos, dir, eyes): + (screen_x, screen_y) = (self.to_screen(pos) ) + dx = 0 + dy = 0 + if dir == 'North': + dy = -0.2 + if dir == 'South': + dy = 0.2 + if dir == 'East': + dx = 0.2 + if dir == 'West': + dx = -0.2 + moveCircle(eyes[0],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2) + moveCircle(eyes[1],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2) + moveCircle(eyes[2],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08) + moveCircle(eyes[3],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08) + + def moveGhost(self, ghost, ghostIndex, prevGhost, ghostImageParts): + old_x, old_y = self.to_screen(self.getPosition(prevGhost)) + new_x, new_y = self.to_screen(self.getPosition(ghost)) + delta = new_x - old_x, new_y - old_y + + for ghostImagePart in ghostImageParts: + move_by(ghostImagePart, delta) + refresh() + + if ghost.scaredTimer > 0: + color = SCARED_COLOR + else: + color = GHOST_COLORS[ghostIndex] + edit(ghostImageParts[0], ('fill', color), ('outline', color)) + self.moveEyes(self.getPosition(ghost), self.getDirection(ghost), ghostImageParts[-4:]) + refresh() + + def getPosition(self, agentState): + if agentState.configuration == None: return (-1000, -1000) + return agentState.getPosition() + + def getDirection(self, agentState): + if agentState.configuration == None: return Directions.STOP + return agentState.configuration.getDirection() + + def finish(self): + end_graphics() + + def to_screen(self, point): + ( x, y ) = point + #y = self.height - y + x = (x + 1)*self.gridSize + y = (self.height - y)*self.gridSize + return ( x, y ) + + # Fixes some TK issue with off-center circles + def to_screen2(self, point): + ( x, y ) = point + #y = self.height - y + x = (x + 1)*self.gridSize + y = (self.height - y)*self.gridSize + return ( x, y ) + + def drawWalls(self, wallMatrix): + wallColor = WALL_COLOR + for xNum, x in enumerate(wallMatrix): + if self.capture and (xNum * 2) < wallMatrix.width: wallColor = TEAM_COLORS[0] + if self.capture and (xNum * 2) >= wallMatrix.width: wallColor = TEAM_COLORS[1] + + for yNum, cell in enumerate(x): + if cell: # There's a wall here + pos = (xNum, yNum) + screen = self.to_screen(pos) + screen2 = self.to_screen2(pos) + + # draw each quadrant of the square based on adjacent walls + wIsWall = self.isWall(xNum-1, yNum, wallMatrix) + eIsWall = self.isWall(xNum+1, yNum, wallMatrix) + nIsWall = self.isWall(xNum, yNum+1, wallMatrix) + sIsWall = self.isWall(xNum, yNum-1, wallMatrix) + nwIsWall = self.isWall(xNum-1, yNum+1, wallMatrix) + swIsWall = self.isWall(xNum-1, yNum-1, wallMatrix) + neIsWall = self.isWall(xNum+1, yNum+1, wallMatrix) + seIsWall = self.isWall(xNum+1, yNum-1, wallMatrix) + + # NE quadrant + if (not nIsWall) and (not eIsWall): + # inner circle + circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (0,91), 'arc') + if (nIsWall) and (not eIsWall): + # vertical line + line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor) + if (not nIsWall) and (eIsWall): + # horizontal line + line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor) + if (nIsWall) and (eIsWall) and (not neIsWall): + # outer circle + circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (180,271), 'arc') + line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor) + line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5))), wallColor) + + # NW quadrant + if (not nIsWall) and (not wIsWall): + # inner circle + circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (90,181), 'arc') + if (nIsWall) and (not wIsWall): + # vertical line + line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor) + if (not nIsWall) and (wIsWall): + # horizontal line + line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(-1)*WALL_RADIUS)), wallColor) + if (nIsWall) and (wIsWall) and (not nwIsWall): + # outer circle + circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (270,361), 'arc') + line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(-1)*WALL_RADIUS)), wallColor) + line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5))), wallColor) + + # SE quadrant + if (not sIsWall) and (not eIsWall): + # inner circle + circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (270,361), 'arc') + if (sIsWall) and (not eIsWall): + # vertical line + line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor) + if (not sIsWall) and (eIsWall): + # horizontal line + line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(1)*WALL_RADIUS)), wallColor) + if (sIsWall) and (eIsWall) and (not seIsWall): + # outer circle + circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (90,181), 'arc') + line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5, self.gridSize*(1)*WALL_RADIUS)), wallColor) + line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5))), wallColor) + + # SW quadrant + if (not sIsWall) and (not wIsWall): + # inner circle + circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (180,271), 'arc') + if (sIsWall) and (not wIsWall): + # vertical line + line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor) + if (not sIsWall) and (wIsWall): + # horizontal line + line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(1)*WALL_RADIUS)), wallColor) + if (sIsWall) and (wIsWall) and (not swIsWall): + # outer circle + circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (0,91), 'arc') + line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(1)*WALL_RADIUS)), wallColor) + line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5))), wallColor) + + def isWall(self, x, y, walls): + if x < 0 or y < 0: + return False + if x >= walls.width or y >= walls.height: + return False + return walls[x][y] + + def drawFood(self, foodMatrix ): + foodImages = [] + color = FOOD_COLOR + for xNum, x in enumerate(foodMatrix): + if self.capture and (xNum * 2) <= foodMatrix.width: color = TEAM_COLORS[0] + if self.capture and (xNum * 2) > foodMatrix.width: color = TEAM_COLORS[1] + imageRow = [] + foodImages.append(imageRow) + for yNum, cell in enumerate(x): + if cell: # There's food here + screen = self.to_screen((xNum, yNum )) + dot = circle( screen, + FOOD_SIZE * self.gridSize, + outlineColor = color, fillColor = color, + width = 1) + imageRow.append(dot) + else: + imageRow.append(None) + return foodImages + + def drawCapsules(self, capsules ): + capsuleImages = {} + for capsule in capsules: + ( screen_x, screen_y ) = self.to_screen(capsule) + dot = circle( (screen_x, screen_y), + CAPSULE_SIZE * self.gridSize, + outlineColor = CAPSULE_COLOR, + fillColor = CAPSULE_COLOR, + width = 1) + capsuleImages[capsule] = dot + return capsuleImages + + def removeFood(self, cell, foodImages ): + x, y = cell + remove_from_screen(foodImages[x][y]) + + def removeCapsule(self, cell, capsuleImages ): + x, y = cell + remove_from_screen(capsuleImages[(x, y)]) + + def drawExpandedCells(self, cells): + """ + Draws an overlay of expanded grid positions for search agents + """ + n = float(len(cells)) + baseColor = [1.0, 0.0, 0.0] + self.clearExpandedCells() + self.expandedCells = [] + for k, cell in enumerate(cells): + screenPos = self.to_screen( cell) + cellColor = formatColor(*[(n-k) * c * .5 / n + .25 for c in baseColor]) + block = square(screenPos, + 0.5 * self.gridSize, + color = cellColor, + filled = 1, behind=2) + self.expandedCells.append(block) + if self.frameTime < 0: + refresh() + + def clearExpandedCells(self): + if 'expandedCells' in dir(self) and len(self.expandedCells) > 0: + for cell in self.expandedCells: + remove_from_screen(cell) + + + def updateDistributions(self, distributions): + "Draws an agent's belief distributions" + # copy all distributions so we don't change their state + distributions = map(lambda x: x.copy(), distributions) + if self.distributionImages == None: + self.drawDistributions(self.previousState) + for x in range(len(self.distributionImages)): + for y in range(len(self.distributionImages[0])): + image = self.distributionImages[x][y] + weights = [dist[ (x,y) ] for dist in distributions] + + if sum(weights) != 0: + pass + # Fog of war + color = [0.0,0.0,0.0] + colors = GHOST_VEC_COLORS[1:] # With Pacman + if self.capture: colors = GHOST_VEC_COLORS + for weight, gcolor in zip(weights, colors): + color = [min(1.0, c + 0.95 * g * weight ** .3) for c,g in zip(color, gcolor)] + changeColor(image, formatColor(*color)) + refresh() + +class FirstPersonPacmanGraphics(PacmanGraphics): + def __init__(self, zoom = 1.0, showGhosts = True, capture = False, frameTime=0): + PacmanGraphics.__init__(self, zoom, frameTime=frameTime) + self.showGhosts = showGhosts + self.capture = capture + + def initialize(self, state, isBlue = False): + + self.isBlue = isBlue + PacmanGraphics.startGraphics(self, state) + # Initialize distribution images + walls = state.layout.walls + dist = [] + self.layout = state.layout + + # Draw the rest + self.distributionImages = None # initialize lazily + self.drawStaticObjects(state) + self.drawAgentObjects(state) + + # Information + self.previousState = state + + def lookAhead(self, config, state): + if config.getDirection() == 'Stop': + return + else: + pass + # Draw relevant ghosts + allGhosts = state.getGhostStates() + visibleGhosts = state.getVisibleGhosts() + for i, ghost in enumerate(allGhosts): + if ghost in visibleGhosts: + self.drawGhost(ghost, i) + else: + self.currentGhostImages[i] = None + + def getGhostColor(self, ghost, ghostIndex): + return GHOST_COLORS[ghostIndex] + + def getPosition(self, ghostState): + if not self.showGhosts and not ghostState.isPacman and ghostState.getPosition()[1] > 1: + return (-1000, -1000) + else: + return PacmanGraphics.getPosition(self, ghostState) + +def add(x, y): + return (x[0] + y[0], x[1] + y[1]) + + +# Saving graphical output +# ----------------------- +# Note: to make an animated gif from this postscript output, try the command: +# convert -delay 7 -loop 1 -compress lzw -layers optimize frame* out.gif +# convert is part of imagemagick (freeware) + +SAVE_POSTSCRIPT = False +POSTSCRIPT_OUTPUT_DIR = 'frames' +FRAME_NUMBER = 0 +import os + +def saveFrame(): + "Saves the current graphical output as a postscript file" + global SAVE_POSTSCRIPT, FRAME_NUMBER, POSTSCRIPT_OUTPUT_DIR + if not SAVE_POSTSCRIPT: return + if not os.path.exists(POSTSCRIPT_OUTPUT_DIR): os.mkdir(POSTSCRIPT_OUTPUT_DIR) + name = os.path.join(POSTSCRIPT_OUTPUT_DIR, 'frame_%08d.ps' % FRAME_NUMBER) + FRAME_NUMBER += 1 + writePostscript(name) # writes the current canvas diff --git a/search/graphicsDisplay.pyc b/search/graphicsDisplay.pyc new file mode 100644 index 0000000..403b55d Binary files /dev/null and b/search/graphicsDisplay.pyc differ diff --git a/search/graphicsUtils.py b/search/graphicsUtils.py new file mode 100644 index 0000000..b80d3d2 --- /dev/null +++ b/search/graphicsUtils.py @@ -0,0 +1,402 @@ +# graphicsUtils.py +# ---------------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +import sys +import math +import random +import string +import time +import types +import Tkinter +import os.path + +_Windows = sys.platform == 'win32' # True if on Win95/98/NT + +_root_window = None # The root window for graphics output +_canvas = None # The canvas which holds graphics +_canvas_xs = None # Size of canvas object +_canvas_ys = None +_canvas_x = None # Current position on canvas +_canvas_y = None +_canvas_col = None # Current colour (set to black below) +_canvas_tsize = 12 +_canvas_tserifs = 0 + +def formatColor(r, g, b): + return '#%02x%02x%02x' % (int(r * 255), int(g * 255), int(b * 255)) + +def colorToVector(color): + return map(lambda x: int(x, 16) / 256.0, [color[1:3], color[3:5], color[5:7]]) + +if _Windows: + _canvas_tfonts = ['times new roman', 'lucida console'] +else: + _canvas_tfonts = ['times', 'lucidasans-24'] + pass # XXX need defaults here + +def sleep(secs): + global _root_window + if _root_window == None: + time.sleep(secs) + else: + _root_window.update_idletasks() + _root_window.after(int(1000 * secs), _root_window.quit) + _root_window.mainloop() + +def begin_graphics(width=640, height=480, color=formatColor(0, 0, 0), title=None): + + global _root_window, _canvas, _canvas_x, _canvas_y, _canvas_xs, _canvas_ys, _bg_color + + # Check for duplicate call + if _root_window is not None: + # Lose the window. + _root_window.destroy() + + # Save the canvas size parameters + _canvas_xs, _canvas_ys = width - 1, height - 1 + _canvas_x, _canvas_y = 0, _canvas_ys + _bg_color = color + + # Create the root window + _root_window = Tkinter.Tk() + _root_window.protocol('WM_DELETE_WINDOW', _destroy_window) + _root_window.title(title or 'Graphics Window') + _root_window.resizable(0, 0) + + # Create the canvas object + try: + _canvas = Tkinter.Canvas(_root_window, width=width, height=height) + _canvas.pack() + draw_background() + _canvas.update() + except: + _root_window = None + raise + + # Bind to key-down and key-up events + _root_window.bind( "", _keypress ) + _root_window.bind( "", _keyrelease ) + _root_window.bind( "", _clear_keys ) + _root_window.bind( "", _clear_keys ) + _root_window.bind( "", _leftclick ) + _root_window.bind( "", _rightclick ) + _root_window.bind( "", _rightclick ) + _root_window.bind( "", _ctrl_leftclick) + _clear_keys() + +_leftclick_loc = None +_rightclick_loc = None +_ctrl_leftclick_loc = None + +def _leftclick(event): + global _leftclick_loc + _leftclick_loc = (event.x, event.y) + +def _rightclick(event): + global _rightclick_loc + _rightclick_loc = (event.x, event.y) + +def _ctrl_leftclick(event): + global _ctrl_leftclick_loc + _ctrl_leftclick_loc = (event.x, event.y) + +def wait_for_click(): + while True: + global _leftclick_loc + global _rightclick_loc + global _ctrl_leftclick_loc + if _leftclick_loc != None: + val = _leftclick_loc + _leftclick_loc = None + return val, 'left' + if _rightclick_loc != None: + val = _rightclick_loc + _rightclick_loc = None + return val, 'right' + if _ctrl_leftclick_loc != None: + val = _ctrl_leftclick_loc + _ctrl_leftclick_loc = None + return val, 'ctrl_left' + sleep(0.05) + +def draw_background(): + corners = [(0,0), (0, _canvas_ys), (_canvas_xs, _canvas_ys), (_canvas_xs, 0)] + polygon(corners, _bg_color, fillColor=_bg_color, filled=True, smoothed=False) + +def _destroy_window(event=None): + sys.exit(0) +# global _root_window +# _root_window.destroy() +# _root_window = None + #print "DESTROY" + +def end_graphics(): + global _root_window, _canvas, _mouse_enabled + try: + try: + sleep(1) + if _root_window != None: + _root_window.destroy() + except SystemExit, e: + print 'Ending graphics raised an exception:', e + finally: + _root_window = None + _canvas = None + _mouse_enabled = 0 + _clear_keys() + +def clear_screen(background=None): + global _canvas_x, _canvas_y + _canvas.delete('all') + draw_background() + _canvas_x, _canvas_y = 0, _canvas_ys + +def polygon(coords, outlineColor, fillColor=None, filled=1, smoothed=1, behind=0, width=1): + c = [] + for coord in coords: + c.append(coord[0]) + c.append(coord[1]) + if fillColor == None: fillColor = outlineColor + if filled == 0: fillColor = "" + poly = _canvas.create_polygon(c, outline=outlineColor, fill=fillColor, smooth=smoothed, width=width) + if behind > 0: + _canvas.tag_lower(poly, behind) # Higher should be more visible + return poly + +def square(pos, r, color, filled=1, behind=0): + x, y = pos + coords = [(x - r, y - r), (x + r, y - r), (x + r, y + r), (x - r, y + r)] + return polygon(coords, color, color, filled, 0, behind=behind) + +def circle(pos, r, outlineColor, fillColor, endpoints=None, style='pieslice', width=2): + x, y = pos + x0, x1 = x - r - 1, x + r + y0, y1 = y - r - 1, y + r + if endpoints == None: + e = [0, 359] + else: + e = list(endpoints) + while e[0] > e[1]: e[1] = e[1] + 360 + + return _canvas.create_arc(x0, y0, x1, y1, outline=outlineColor, fill=fillColor, + extent=e[1] - e[0], start=e[0], style=style, width=width) + +def image(pos, file="../../blueghost.gif"): + x, y = pos + # img = PhotoImage(file=file) + return _canvas.create_image(x, y, image = Tkinter.PhotoImage(file=file), anchor = Tkinter.NW) + + +def refresh(): + _canvas.update_idletasks() + +def moveCircle(id, pos, r, endpoints=None): + global _canvas_x, _canvas_y + + x, y = pos +# x0, x1 = x - r, x + r + 1 +# y0, y1 = y - r, y + r + 1 + x0, x1 = x - r - 1, x + r + y0, y1 = y - r - 1, y + r + if endpoints == None: + e = [0, 359] + else: + e = list(endpoints) + while e[0] > e[1]: e[1] = e[1] + 360 + + if os.path.isfile('flag'): + edit(id, ('extent', e[1] - e[0])) + else: + edit(id, ('start', e[0]), ('extent', e[1] - e[0])) + move_to(id, x0, y0) + +def edit(id, *args): + _canvas.itemconfigure(id, **dict(args)) + +def text(pos, color, contents, font='Helvetica', size=12, style='normal', anchor="nw"): + global _canvas_x, _canvas_y + x, y = pos + font = (font, str(size), style) + return _canvas.create_text(x, y, fill=color, text=contents, font=font, anchor=anchor) + +def changeText(id, newText, font=None, size=12, style='normal'): + _canvas.itemconfigure(id, text=newText) + if font != None: + _canvas.itemconfigure(id, font=(font, '-%d' % size, style)) + +def changeColor(id, newColor): + _canvas.itemconfigure(id, fill=newColor) + +def line(here, there, color=formatColor(0, 0, 0), width=2): + x0, y0 = here[0], here[1] + x1, y1 = there[0], there[1] + return _canvas.create_line(x0, y0, x1, y1, fill=color, width=width) + +############################################################################## +### Keypress handling ######################################################## +############################################################################## + +# We bind to key-down and key-up events. + +_keysdown = {} +_keyswaiting = {} +# This holds an unprocessed key release. We delay key releases by up to +# one call to keys_pressed() to get round a problem with auto repeat. +_got_release = None + +def _keypress(event): + global _got_release + #remap_arrows(event) + _keysdown[event.keysym] = 1 + _keyswaiting[event.keysym] = 1 +# print event.char, event.keycode + _got_release = None + +def _keyrelease(event): + global _got_release + #remap_arrows(event) + try: + del _keysdown[event.keysym] + except: + pass + _got_release = 1 + +def remap_arrows(event): + # TURN ARROW PRESSES INTO LETTERS (SHOULD BE IN KEYBOARD AGENT) + if event.char in ['a', 's', 'd', 'w']: + return + if event.keycode in [37, 101]: # LEFT ARROW (win / x) + event.char = 'a' + if event.keycode in [38, 99]: # UP ARROW + event.char = 'w' + if event.keycode in [39, 102]: # RIGHT ARROW + event.char = 'd' + if event.keycode in [40, 104]: # DOWN ARROW + event.char = 's' + +def _clear_keys(event=None): + global _keysdown, _got_release, _keyswaiting + _keysdown = {} + _keyswaiting = {} + _got_release = None + +def keys_pressed(d_o_e=Tkinter.tkinter.dooneevent, + d_w=Tkinter.tkinter.DONT_WAIT): + d_o_e(d_w) + if _got_release: + d_o_e(d_w) + return _keysdown.keys() + +def keys_waiting(): + global _keyswaiting + keys = _keyswaiting.keys() + _keyswaiting = {} + return keys + +# Block for a list of keys... + +def wait_for_keys(): + keys = [] + while keys == []: + keys = keys_pressed() + sleep(0.05) + return keys + +def remove_from_screen(x, + d_o_e=Tkinter.tkinter.dooneevent, + d_w=Tkinter.tkinter.DONT_WAIT): + _canvas.delete(x) + d_o_e(d_w) + +def _adjust_coords(coord_list, x, y): + for i in range(0, len(coord_list), 2): + coord_list[i] = coord_list[i] + x + coord_list[i + 1] = coord_list[i + 1] + y + return coord_list + +def move_to(object, x, y=None, + d_o_e=Tkinter.tkinter.dooneevent, + d_w=Tkinter.tkinter.DONT_WAIT): + if y is None: + try: x, y = x + except: raise 'incomprehensible coordinates' + + horiz = True + newCoords = [] + current_x, current_y = _canvas.coords(object)[0:2] # first point + for coord in _canvas.coords(object): + if horiz: + inc = x - current_x + else: + inc = y - current_y + horiz = not horiz + + newCoords.append(coord + inc) + + _canvas.coords(object, *newCoords) + d_o_e(d_w) + +def move_by(object, x, y=None, + d_o_e=Tkinter.tkinter.dooneevent, + d_w=Tkinter.tkinter.DONT_WAIT, lift=False): + if y is None: + try: x, y = x + except: raise Exception, 'incomprehensible coordinates' + + horiz = True + newCoords = [] + for coord in _canvas.coords(object): + if horiz: + inc = x + else: + inc = y + horiz = not horiz + + newCoords.append(coord + inc) + + _canvas.coords(object, *newCoords) + d_o_e(d_w) + if lift: + _canvas.tag_raise(object) + +def writePostscript(filename): + "Writes the current canvas to a postscript file." + psfile = file(filename, 'w') + psfile.write(_canvas.postscript(pageanchor='sw', + y='0.c', + x='0.c')) + psfile.close() + +ghost_shape = [ + (0, - 0.5), + (0.25, - 0.75), + (0.5, - 0.5), + (0.75, - 0.75), + (0.75, 0.5), + (0.5, 0.75), + (- 0.5, 0.75), + (- 0.75, 0.5), + (- 0.75, - 0.75), + (- 0.5, - 0.5), + (- 0.25, - 0.75) + ] + +if __name__ == '__main__': + begin_graphics() + clear_screen() + ghost_shape = [(x * 10 + 20, y * 10 + 20) for x, y in ghost_shape] + g = polygon(ghost_shape, formatColor(1, 1, 1)) + move_to(g, (50, 50)) + circle((150, 150), 20, formatColor(0.7, 0.3, 0.0), endpoints=[15, - 15]) + sleep(2) diff --git a/search/graphicsUtils.pyc b/search/graphicsUtils.pyc new file mode 100644 index 0000000..8cdd0a8 Binary files /dev/null and b/search/graphicsUtils.pyc differ diff --git a/search/keyboardAgents.py b/search/keyboardAgents.py new file mode 100644 index 0000000..c7d9fcf --- /dev/null +++ b/search/keyboardAgents.py @@ -0,0 +1,84 @@ +# keyboardAgents.py +# ----------------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +from game import Agent +from game import Directions +import random + +class KeyboardAgent(Agent): + """ + An agent controlled by the keyboard. + """ + # NOTE: Arrow keys also work. + WEST_KEY = 'a' + EAST_KEY = 'd' + NORTH_KEY = 'w' + SOUTH_KEY = 's' + STOP_KEY = 'q' + + def __init__( self, index = 0 ): + + self.lastMove = Directions.STOP + self.index = index + self.keys = [] + + def getAction( self, state): + from graphicsUtils import keys_waiting + from graphicsUtils import keys_pressed + keys = keys_waiting() + keys_pressed() + if keys != []: + self.keys = keys + + legal = state.getLegalActions(self.index) + move = self.getMove(legal) + + if move == Directions.STOP: + # Try to move in the same direction as before + if self.lastMove in legal: + move = self.lastMove + + if (self.STOP_KEY in self.keys) and Directions.STOP in legal: move = Directions.STOP + + if move not in legal: + move = random.choice(legal) + + self.lastMove = move + return move + + def getMove(self, legal): + move = Directions.STOP + if (self.WEST_KEY in self.keys or 'Left' in self.keys) and Directions.WEST in legal: move = Directions.WEST + if (self.EAST_KEY in self.keys or 'Right' in self.keys) and Directions.EAST in legal: move = Directions.EAST + if (self.NORTH_KEY in self.keys or 'Up' in self.keys) and Directions.NORTH in legal: move = Directions.NORTH + if (self.SOUTH_KEY in self.keys or 'Down' in self.keys) and Directions.SOUTH in legal: move = Directions.SOUTH + return move + +class KeyboardAgent2(KeyboardAgent): + """ + A second agent controlled by the keyboard. + """ + # NOTE: Arrow keys also work. + WEST_KEY = 'j' + EAST_KEY = "l" + NORTH_KEY = 'i' + SOUTH_KEY = 'k' + STOP_KEY = 'u' + + def getMove(self, legal): + move = Directions.STOP + if (self.WEST_KEY in self.keys) and Directions.WEST in legal: move = Directions.WEST + if (self.EAST_KEY in self.keys) and Directions.EAST in legal: move = Directions.EAST + if (self.NORTH_KEY in self.keys) and Directions.NORTH in legal: move = Directions.NORTH + if (self.SOUTH_KEY in self.keys) and Directions.SOUTH in legal: move = Directions.SOUTH + return move diff --git a/search/keyboardAgents.pyc b/search/keyboardAgents.pyc new file mode 100644 index 0000000..9129cea Binary files /dev/null and b/search/keyboardAgents.pyc differ diff --git a/search/layout.py b/search/layout.py new file mode 100644 index 0000000..c6b377d --- /dev/null +++ b/search/layout.py @@ -0,0 +1,149 @@ +# layout.py +# --------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +from util import manhattanDistance +from game import Grid +import os +import random + +VISIBILITY_MATRIX_CACHE = {} + +class Layout: + """ + A Layout manages the static information about the game board. + """ + + def __init__(self, layoutText): + self.width = len(layoutText[0]) + self.height= len(layoutText) + self.walls = Grid(self.width, self.height, False) + self.food = Grid(self.width, self.height, False) + self.capsules = [] + self.agentPositions = [] + self.numGhosts = 0 + self.processLayoutText(layoutText) + self.layoutText = layoutText + self.totalFood = len(self.food.asList()) + # self.initializeVisibilityMatrix() + + def getNumGhosts(self): + return self.numGhosts + + def initializeVisibilityMatrix(self): + global VISIBILITY_MATRIX_CACHE + if reduce(str.__add__, self.layoutText) not in VISIBILITY_MATRIX_CACHE: + from game import Directions + vecs = [(-0.5,0), (0.5,0),(0,-0.5),(0,0.5)] + dirs = [Directions.NORTH, Directions.SOUTH, Directions.WEST, Directions.EAST] + vis = Grid(self.width, self.height, {Directions.NORTH:set(), Directions.SOUTH:set(), Directions.EAST:set(), Directions.WEST:set(), Directions.STOP:set()}) + for x in range(self.width): + for y in range(self.height): + if self.walls[x][y] == False: + for vec, direction in zip(vecs, dirs): + dx, dy = vec + nextx, nexty = x + dx, y + dy + while (nextx + nexty) != int(nextx) + int(nexty) or not self.walls[int(nextx)][int(nexty)] : + vis[x][y][direction].add((nextx, nexty)) + nextx, nexty = x + dx, y + dy + self.visibility = vis + VISIBILITY_MATRIX_CACHE[reduce(str.__add__, self.layoutText)] = vis + else: + self.visibility = VISIBILITY_MATRIX_CACHE[reduce(str.__add__, self.layoutText)] + + def isWall(self, pos): + x, col = pos + return self.walls[x][col] + + def getRandomLegalPosition(self): + x = random.choice(range(self.width)) + y = random.choice(range(self.height)) + while self.isWall( (x, y) ): + x = random.choice(range(self.width)) + y = random.choice(range(self.height)) + return (x,y) + + def getRandomCorner(self): + poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)] + return random.choice(poses) + + def getFurthestCorner(self, pacPos): + poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)] + dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses]) + return pos + + def isVisibleFrom(self, ghostPos, pacPos, pacDirection): + row, col = [int(x) for x in pacPos] + return ghostPos in self.visibility[row][col][pacDirection] + + def __str__(self): + return "\n".join(self.layoutText) + + def deepCopy(self): + return Layout(self.layoutText[:]) + + def processLayoutText(self, layoutText): + """ + Coordinates are flipped from the input format to the (x,y) convention here + + The shape of the maze. Each character + represents a different type of object. + % - Wall + . - Food + o - Capsule + G - Ghost + P - Pacman + Other characters are ignored. + """ + maxY = self.height - 1 + for y in range(self.height): + for x in range(self.width): + layoutChar = layoutText[maxY - y][x] + self.processLayoutChar(x, y, layoutChar) + self.agentPositions.sort() + self.agentPositions = [ ( i == 0, pos) for i, pos in self.agentPositions] + + def processLayoutChar(self, x, y, layoutChar): + if layoutChar == '%': + self.walls[x][y] = True + elif layoutChar == '.': + self.food[x][y] = True + elif layoutChar == 'o': + self.capsules.append((x, y)) + elif layoutChar == 'P': + self.agentPositions.append( (0, (x, y) ) ) + elif layoutChar in ['G']: + self.agentPositions.append( (1, (x, y) ) ) + self.numGhosts += 1 + elif layoutChar in ['1', '2', '3', '4']: + self.agentPositions.append( (int(layoutChar), (x,y))) + self.numGhosts += 1 +def getLayout(name, back = 2): + if name.endswith('.lay'): + layout = tryToLoad('layouts/' + name) + if layout == None: layout = tryToLoad(name) + else: + layout = tryToLoad('layouts/' + name + '.lay') + if layout == None: layout = tryToLoad(name + '.lay') + if layout == None and back >= 0: + curdir = os.path.abspath('.') + os.chdir('..') + layout = getLayout(name, back -1) + os.chdir(curdir) + return layout + +def tryToLoad(fullname): + if(not os.path.exists(fullname)): return None + f = open(fullname) + try: return Layout([line.strip() for line in f]) + finally: f.close() diff --git a/search/layout.pyc b/search/layout.pyc new file mode 100644 index 0000000..5276e80 Binary files /dev/null and b/search/layout.pyc differ diff --git a/search/layouts/bigCorners.lay b/search/layouts/bigCorners.lay new file mode 100644 index 0000000..4d89d7b --- /dev/null +++ b/search/layouts/bigCorners.lay @@ -0,0 +1,37 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%. % %.% +% %%%%% % %%% %%% %%%%%%% % % +% % % % % % % % +%%%%% %%%%% %%% % % % %%% %%%%% % %%% +% % % % % % % % % % % % % +% %%% % % % %%% %%%%% %%% % %%% %%% % +% % % % % % % % % +%%% %%%%%%%%% %%%%%%% %%% %%% % % % % +% % % % % % % +% % %%%%% % %%% % % %%% % %%% %%% % % +% % % % % % % % % % % % % % +% % % %%%%%%% % %%%%%%%%% %%% % %%% % +% % % % % % % % % % +%%% %%% % %%%%% %%%%% %%% %%% %%%%% % +% % % % % % % % % +% % % % % % %%% %%% %%% % % % % % % +% % % % % %% % % % % % % % % % +% % %%%%% % %%% %%% % %%% %%% %%%%% +% % % % % % % % % % % +% %%% % % % %%% %%% %%%%%%%%% % %%% +% % % % % % % +% %%% %%%%%%%%%%%%%%%%%%%%% % % %%% % +% % % % +% % % %%%%% %%% % % % % %%%%%%%%%%%%% +% % % % % % % % % % % % +% % %%% %%% % % % %%%%%%%%% %%% % % % +% % % % % % %P % % % % % % +% %%% %%% %%% % %%% % % %%%%% % %%%%% +% % % % % % % % +%%% % %%%%% %%%%% %%% %%% % %%% % %%% +% % % % % % % % % % % % % % % +% % %%% % % % % %%%%%%%%% % % % % % % +% % % % +% % % %%% %%% %%%%%%% %%% %%% %%% % +%.% % % % % .% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \ No newline at end of file diff --git a/search/layouts/bigMaze.lay b/search/layouts/bigMaze.lay new file mode 100644 index 0000000..e11fade --- /dev/null +++ b/search/layouts/bigMaze.lay @@ -0,0 +1,37 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% % % % % % % % +% %%%%%%% % %%% % %%% %%% %%%%%%% % % +% % % % % % % % +%%%%% %%%%% %%% % % % %%% %%%%% % %%% +% % % % % % % % % % % % % % +% %%% % % % %%% %%%%% %%% % %%% %%% % +% % % % % % % % % +%%% %%%%%%%%% %%%%%%% %%% %%% % % % % +% % % % % % % +% % %%%%% % %%% % % %%% % %%% %%% % % +% % % % % % % % % % % % % % +% % % %%%%%%% % %%%%%%%%% %%% % %%% % +% % % % % % % % % % +%%% %%% % %%%%% %%%%% %%% %%% %%%%% % +% % % % % % % % % % % % +% % % % % %%% %%% %%% %%% % % % % % % +% % % % % % % % % +%%% %%%%%%% % % %%%%% %%% % %%% %%%%% +% % % % % % % % % % +%%%%% % % %%%%%%%%% %%%%%%%%%%% % %%% +% % % % % % % % % +% %%% %%%%% %%%%%%%%% %%%%% % % %%% % +% % % % % % % +% % % %%%%% %%% % % % % %%%%%%%%%%%%% +% % % % % % % % % % % % +% % %%% %%% % % % %%%%%%%%% %%% % % % +% % % % % % % % % % % % % +% %%% %%% %%%%% %%% % % %%%%% % %%%%% +% % % % % % % % % +%%% % %%%%% %%%%% %%% %%% % %%% % %%% +% % % % % % % % % % % % % % % +% % %%% % % % % %%%%%%%%% % % % % % % +% % % % % % +% % % % %%% %%% %%%%%%% %%% %%% %%% % +%.% % % % % % % % P% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \ No newline at end of file diff --git a/search/layouts/bigSafeSearch.lay b/search/layouts/bigSafeSearch.lay new file mode 100644 index 0000000..b5fd414 --- /dev/null +++ b/search/layouts/bigSafeSearch.lay @@ -0,0 +1,8 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%.%.........%% G % o%%%%.....% +%.%.%%%%%%%.%%%%%% %%%%%%%.%%.% +%............%...%............% +%%%%%...%%%.. ..%.%...%.%%% +%o%%%.%%%%%.%%%%%%%.%%%.%.%%%%% +% ..........Po...%...%. o% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% diff --git a/search/layouts/bigSearch.lay b/search/layouts/bigSearch.lay new file mode 100644 index 0000000..bb59eb8 --- /dev/null +++ b/search/layouts/bigSearch.lay @@ -0,0 +1,15 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%.....%.................%.....% +%.%%%.%.%%%.%%%%%%%.%%%.%.....% +%.%...%.%......%......%.%.....% +%...%%%.%.%%%%.%.%%%%...%%%...% +%%%.%.%.%.%......%..%.%...%.%%% +%...%.%%%.%.%%% %%%.%.%%%.%...% +%.%%%.......% %.......%%%.% +%...%.%%%%%.%%%%%%%.%.%%%.%...% +%%%.%...%.%....%....%.%...%.%%% +%...%%%.%.%%%%.%.%%%%.%.%%%...% +%.......%......%......%.....%.% +%.....%.%%%.%%%%%%%.%%%.%.%%%.% +%.....%........P....%...%.....% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% diff --git a/search/layouts/boxSearch.lay b/search/layouts/boxSearch.lay new file mode 100644 index 0000000..4a113fc --- /dev/null +++ b/search/layouts/boxSearch.lay @@ -0,0 +1,14 @@ +%%%%%%%%%%%%%% +%. . . . . % % +% % % +%. . . . . %G% +% % % +%. . . . . % % +% % % +%. . . . . % % +% P %G% +%. . . . . % % +% % % +%. . . . . % % +% % % +%%%%%%%%%%%%%% diff --git a/search/layouts/capsuleClassic.lay b/search/layouts/capsuleClassic.lay new file mode 100644 index 0000000..06a5c51 --- /dev/null +++ b/search/layouts/capsuleClassic.lay @@ -0,0 +1,7 @@ +%%%%%%%%%%%%%%%%%%% +%G. G ....% +%.% % %%%%%% %.%%.% +%.%o% % o% %.o%.% +%.%%%.% %%% %..%.% +%..... P %..%G% +%%%%%%%%%%%%%%%%%%%% diff --git a/search/layouts/contestClassic.lay b/search/layouts/contestClassic.lay new file mode 100644 index 0000000..84c8733 --- /dev/null +++ b/search/layouts/contestClassic.lay @@ -0,0 +1,9 @@ +%%%%%%%%%%%%%%%%%%%% +%o...%........%...o% +%.%%.%.%%..%%.%.%%.% +%...... G GG%......% +%.%.%%.%% %%%.%%.%.% +%.%....% ooo%.%..%.% +%.%.%%.% %% %.%.%%.% +%o%......P....%....% +%%%%%%%%%%%%%%%%%%%% diff --git a/search/layouts/contoursMaze.lay b/search/layouts/contoursMaze.lay new file mode 100644 index 0000000..a068956 --- /dev/null +++ b/search/layouts/contoursMaze.lay @@ -0,0 +1,11 @@ +%%%%%%%%%%%%%%%%%%%%% +% % +% % +% % +% % +% P % +% % +% % +% % +%. % +%%%%%%%%%%%%%%%%%%%%% \ No newline at end of file diff --git a/search/layouts/greedySearch.lay b/search/layouts/greedySearch.lay new file mode 100644 index 0000000..4072363 --- /dev/null +++ b/search/layouts/greedySearch.lay @@ -0,0 +1,8 @@ +%%%%%% +%....% +% %%.% +% %%.% +%.P .% +%.%%%% +%....% +%%%%%% \ No newline at end of file diff --git a/search/layouts/mediumClassic.lay b/search/layouts/mediumClassic.lay new file mode 100644 index 0000000..33c5db8 --- /dev/null +++ b/search/layouts/mediumClassic.lay @@ -0,0 +1,11 @@ +%%%%%%%%%%%%%%%%%%%% +%o...%........%....% +%.%%.%.%%%%%%.%.%%.% +%.%..............%.% +%.%.%%.%% %%.%%.%.% +%......%G G%......% +%.%.%%.%%%%%%.%%.%.% +%.%..............%.% +%.%%.%.%%%%%%.%.%%.% +%....%...P....%...o% +%%%%%%%%%%%%%%%%%%%% diff --git a/search/layouts/mediumCorners.lay b/search/layouts/mediumCorners.lay new file mode 100644 index 0000000..6a39756 --- /dev/null +++ b/search/layouts/mediumCorners.lay @@ -0,0 +1,14 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%. % % % %.% +% % % %%%%%% %%%%%%% % % +% % % % % % +%%%%% %%%%% %%% %% %%%%% % %%% +% % % % % % % % % +% %%% % % % %%%%%%%% %%% %%% % +% % %% % % % % +%%% % %%%%%%% %%%% %%% % % % % +% % %% % % % +% % %%%%% % %%%% % %%% %%% % % +% % % % % % %%% % +%. %P%%%%% % %%% % .% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \ No newline at end of file diff --git a/search/layouts/mediumDottedMaze.lay b/search/layouts/mediumDottedMaze.lay new file mode 100644 index 0000000..103f818 --- /dev/null +++ b/search/layouts/mediumDottedMaze.lay @@ -0,0 +1,18 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% P% +% %%%%%%%%%%%%%%%%%%% %%% %%%%%%%% % +% %% % % %%% %%% %% ... % +% %% % % % % %%%% %%%%%%%%% %% %%%%% +% %% % % % % % %% %% %% ... % +% %% % % % % % %%%% %%% %%%%%% % +% % % % % % %% %%%%%%%% ... % +% %% % % %%%%%%%% %% %% %%%%% +% %% % %% %%%%%%%%% %% ... % +% %%%%%% %%%%%%% %% %%%%%% % +%%%%%% % %%%% %% % ... % +% %%%%%% %%%%% % %% %% %%%%% +% %%%%%% % %%%%% %% % +% %%%%%% %%%%%%%%%%% %% %% % +%%%%%%%%%% %%%%%% % +%. %%%%%%%%%%%%%%%% ...... % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \ No newline at end of file diff --git a/search/layouts/mediumMaze.lay b/search/layouts/mediumMaze.lay new file mode 100644 index 0000000..55c1236 --- /dev/null +++ b/search/layouts/mediumMaze.lay @@ -0,0 +1,18 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% P% +% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% % +% %% % % %%%%%%% %% % +% %% % % % % %%%% %%%%%%%%% %% %%%%% +% %% % % % % %% %% % +% %% % % % % % %%%% %%% %%%%%% % +% % % % % % %% %%%%%%%% % +% %% % % %%%%%%%% %% %% %%%%% +% %% % %% %%%%%%%%% %% % +% %%%%%% %%%%%%% %% %%%%%% % +%%%%%% % %%%% %% % % +% %%%%%% %%%%% % %% %% %%%%% +% %%%%%% % %%%%% %% % +% %%%%%% %%%%%%%%%%% %% %% % +%%%%%%%%%% %%%%%% % +%. %%%%%%%%%%%%%%%% % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \ No newline at end of file diff --git a/search/layouts/mediumSafeSearch.lay b/search/layouts/mediumSafeSearch.lay new file mode 100644 index 0000000..e7d6b1c --- /dev/null +++ b/search/layouts/mediumSafeSearch.lay @@ -0,0 +1,6 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%.% ....%% G %%%%%% o%%.% +%.%o%%%%%%%.%%%%%%% %%%%%.% +% %%%.%%%%%.%%%%%%%.%%%.%.%%%.% +% ..........Po...%.........% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% diff --git a/search/layouts/mediumScaryMaze.lay b/search/layouts/mediumScaryMaze.lay new file mode 100644 index 0000000..65d4c33 --- /dev/null +++ b/search/layouts/mediumScaryMaze.lay @@ -0,0 +1,18 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% P% +% %%%%%%%%%%%%%%%%%%% %%% %%%%%%%% % +% %% % % %%% %%% %%GG % +% %% % % % % %%%% %%%%%%%%% %% %%%%% +% %% % % % % % %%GG %% % +% %% % % % % % %%%%% %%% %%%%%% % +% %% % % % % %% %%%%%%%%% % +% %% % % %%%%%%%% %% %% %%%%% +% %% % %% %%%%%%%%% %% % +% %%% %% %%%%%%% %% %%%%%% % +%%%%%% % % %% %% % +% %%%%%% %% %% %% %% %%%%% +% %%%%%% % %%%%% %% % +% %%%% %%%%% %%%%%% % +%%%%%%%% % %%%%%% % +%. %%%%%%%%%%%%%%%% % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \ No newline at end of file diff --git a/search/layouts/mediumSearch.lay b/search/layouts/mediumSearch.lay new file mode 100644 index 0000000..2f8af42 --- /dev/null +++ b/search/layouts/mediumSearch.lay @@ -0,0 +1,8 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%............%%%%%............% +%%%.%...%%%.........%.%...%.%%% +%...%%%.%.%%%%.%.%%%%%%.%%%...% +%.%.....%......%......%.....%.% +%.%%%.%%%%%.%%%%%%%.%%%.%.%%%%% +%.....%........P....%...%.....% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% diff --git a/search/layouts/minimaxClassic.lay b/search/layouts/minimaxClassic.lay new file mode 100644 index 0000000..a547397 --- /dev/null +++ b/search/layouts/minimaxClassic.lay @@ -0,0 +1,5 @@ +%%%%%%%%% +%.P G% +% %.%G%%% +%G %%% +%%%%%%%%% diff --git a/search/layouts/oddSearch.lay b/search/layouts/oddSearch.lay new file mode 100644 index 0000000..2ddbc9a --- /dev/null +++ b/search/layouts/oddSearch.lay @@ -0,0 +1,7 @@ +%%%%%%%%%%%%%%%%%%%% +%...%.........%%...% +%.%.%.%%%%%%%%%%.%.% +%..................% +%%%%%%%%.%.%%%%%%%P% +%%%%%%%%....... % +%%%%%%%%%%%%%%%%%%%% diff --git a/search/layouts/openClassic.lay b/search/layouts/openClassic.lay new file mode 100644 index 0000000..6760b42 --- /dev/null +++ b/search/layouts/openClassic.lay @@ -0,0 +1,9 @@ +%%%%%%%%%%%%%%%%%%%%%%%%% +%.. P .... .... % +%.. ... ... ... ... % +%.. ... ... ... ... % +%.. .... .... G % +%.. ... ... ... ... % +%.. ... ... ... ... % +%.. .... .... o% +%%%%%%%%%%%%%%%%%%%%%%%%% diff --git a/search/layouts/openMaze.lay b/search/layouts/openMaze.lay new file mode 100644 index 0000000..5dee689 --- /dev/null +++ b/search/layouts/openMaze.lay @@ -0,0 +1,23 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% P% +% % % +% % % +% % % +% % % +% % % +% % % % +% % % % +% % % % +% % % % +% % % % +% % % % +% % % % +%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%% +% % % +% % % +% % % +% % +% % +% % +%. % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \ No newline at end of file diff --git a/search/layouts/openSearch.lay b/search/layouts/openSearch.lay new file mode 100644 index 0000000..f02d21d --- /dev/null +++ b/search/layouts/openSearch.lay @@ -0,0 +1,7 @@ +%%%%%%%%%%%%%%%%%%%% +%..................% +%..................% +%........P.........% +%..................% +%..................% +%%%%%%%%%%%%%%%%%%%% diff --git a/search/layouts/originalClassic.lay b/search/layouts/originalClassic.lay new file mode 100644 index 0000000..b2770c5 --- /dev/null +++ b/search/layouts/originalClassic.lay @@ -0,0 +1,27 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%............%%............% +%.%%%%.%%%%%.%%.%%%%%.%%%%.% +%o%%%%.%%%%%.%%.%%%%%.%%%%o% +%.%%%%.%%%%%.%%.%%%%%.%%%%.% +%..........................% +%.%%%%.%%.%%%%%%%%.%%.%%%%.% +%.%%%%.%%.%%%%%%%%.%%.%%%%.% +%......%%....%%....%%......% +%%%%%%.%%%%% %% %%%%%.%%%%%% +%%%%%%.%%%%% %% %%%%%.%%%%%% +%%%%%%.% %.%%%%%% +%%%%%%.% %%%% %%%% %.%%%%%% +% . %G GG G% . % +%%%%%%.% %%%%%%%%%% %.%%%%%% +%%%%%%.% %.%%%%%% +%%%%%%.% %%%%%%%%%% %.%%%%%% +%............%%............% +%.%%%%.%%%%%.%%.%%%%%.%%%%.% +%.%%%%.%%%%%.%%.%%%%%.%%%%.% +%o..%%....... .......%%..o% +%%%.%%.%%.%%%%%%%%.%%.%%.%%% +%%%.%%.%%.%%%%%%%%.%%.%%.%%% +%......%%....%%....%%......% +%.%%%%%%%%%%.%%.%%%%%%%%%%.% +%.............P............% +%%%%%%%%%%%%%%%%%%%%%%%%%%%% diff --git a/search/layouts/powerClassic.lay b/search/layouts/powerClassic.lay new file mode 100644 index 0000000..3f3d983 --- /dev/null +++ b/search/layouts/powerClassic.lay @@ -0,0 +1,7 @@ +%%%%%%%%%%%%%%%%%%%% +%o....o%GGGG%o....o% +%..%...%% %%...%..% +%.%o.%........%.o%.% +%.o%.%.%%%%%%.%.%o.% +%........P.........% +%%%%%%%%%%%%%%%%%%%% diff --git a/search/layouts/smallClassic.lay b/search/layouts/smallClassic.lay new file mode 100644 index 0000000..ce6c1d9 --- /dev/null +++ b/search/layouts/smallClassic.lay @@ -0,0 +1,7 @@ +%%%%%%%%%%%%%%%%%%%% +%......%G G%......% +%.%%...%% %%...%%.% +%.%o.%........%.o%.% +%.%%.%.%%%%%%.%.%%.% +%........P.........% +%%%%%%%%%%%%%%%%%%%% diff --git a/search/layouts/smallMaze.lay b/search/layouts/smallMaze.lay new file mode 100644 index 0000000..72d3ffc --- /dev/null +++ b/search/layouts/smallMaze.lay @@ -0,0 +1,10 @@ +%%%%%%%%%%%%%%%%%%%%%% +% %% % % % +% %%%%%% % %%%%%% % +%%%%%% P % % +% % %%%%%% %% %%%%% +% %%%% % % % +% %%% %%% % % +%%%%%%%%%% %%%%%% % +%. %% % +%%%%%%%%%%%%%%%%%%%%%% \ No newline at end of file diff --git a/search/layouts/smallSafeSearch.lay b/search/layouts/smallSafeSearch.lay new file mode 100644 index 0000000..b97feaa --- /dev/null +++ b/search/layouts/smallSafeSearch.lay @@ -0,0 +1,15 @@ +%%%%%%%%% +%.. % G % +%%% %%%%% +% % +%%%%%%% % +% % +% %%%%% % +% % % +%%%%% % % +% %o% +% %%%%%%% +% .% +%%%%%%%.% +%Po .% +%%%%%%%%% diff --git a/search/layouts/smallSearch.lay b/search/layouts/smallSearch.lay new file mode 100644 index 0000000..c2321d4 --- /dev/null +++ b/search/layouts/smallSearch.lay @@ -0,0 +1,5 @@ +%%%%%%%%%%%%%%%%%%%% +%. ...P .% +%.%%.%%.%%.%%.%% %.% +% %% %..... %.% +%%%%%%%%%%%%%%%%%%%% diff --git a/search/layouts/testClassic.lay b/search/layouts/testClassic.lay new file mode 100644 index 0000000..4b3ffca --- /dev/null +++ b/search/layouts/testClassic.lay @@ -0,0 +1,10 @@ +%%%%% +% . % +%.G.% +% . % +%. .% +% % +% .% +% % +%P .% +%%%%% diff --git a/search/layouts/testMaze.lay b/search/layouts/testMaze.lay new file mode 100644 index 0000000..4d259a4 --- /dev/null +++ b/search/layouts/testMaze.lay @@ -0,0 +1,3 @@ +%%%%%%%%%% +%. P% +%%%%%%%%%% diff --git a/search/layouts/testSearch.lay b/search/layouts/testSearch.lay new file mode 100644 index 0000000..25bad23 --- /dev/null +++ b/search/layouts/testSearch.lay @@ -0,0 +1,5 @@ +%%%%% +%.P % +%%% % +%. % +%%%%% diff --git a/search/layouts/tinyCorners.lay b/search/layouts/tinyCorners.lay new file mode 100644 index 0000000..526c880 --- /dev/null +++ b/search/layouts/tinyCorners.lay @@ -0,0 +1,8 @@ +%%%%%%%% +%. .% +% P % +% %%%% % +% % % +% % %%%% +%.% .% +%%%%%%%% diff --git a/search/layouts/tinyMaze.lay b/search/layouts/tinyMaze.lay new file mode 100644 index 0000000..f7035a5 --- /dev/null +++ b/search/layouts/tinyMaze.lay @@ -0,0 +1,7 @@ +%%%%%%% +% P% +% %%% % +% % % +%% %% +%. %%%% +%%%%%%% diff --git a/search/layouts/tinySafeSearch.lay b/search/layouts/tinySafeSearch.lay new file mode 100644 index 0000000..fea6860 --- /dev/null +++ b/search/layouts/tinySafeSearch.lay @@ -0,0 +1,7 @@ +%%%%%%%%% +% G %...% +%%%%%%% % +%Po % +%.%%.%%.% +%.%%....% +%%%%%%%%% diff --git a/search/layouts/tinySearch.lay b/search/layouts/tinySearch.lay new file mode 100644 index 0000000..c51f4b0 --- /dev/null +++ b/search/layouts/tinySearch.lay @@ -0,0 +1,7 @@ +%%%%%%%%% +%.. ..% +%%%%.%% % +% P % +%.%% %%.% +%.%. .% +%%%%%%%%% diff --git a/search/layouts/trappedClassic.lay b/search/layouts/trappedClassic.lay new file mode 100644 index 0000000..289557f --- /dev/null +++ b/search/layouts/trappedClassic.lay @@ -0,0 +1,5 @@ +%%%%%%%% +% P G% +%G%%%%%% +%.... % +%%%%%%%% diff --git a/search/layouts/trickyClassic.lay b/search/layouts/trickyClassic.lay new file mode 100644 index 0000000..ffa156c --- /dev/null +++ b/search/layouts/trickyClassic.lay @@ -0,0 +1,13 @@ +%%%%%%%%%%%%%%%%%%%% +%o...%........%...o% +%.%%.%.%%..%%.%.%%.% +%.%.....%..%.....%.% +%.%.%%.%% %%.%%.%.% +%...... GGGG%.%....% +%.%....%%%%%%.%..%.% +%.%....% oo%.%..%.% +%.%....% %%%%.%..%.% +%.%...........%..%.% +%.%%.%.%%%%%%.%.%%.% +%o...%...P....%...o% +%%%%%%%%%%%%%%%%%%%% diff --git a/search/layouts/trickySearch.lay b/search/layouts/trickySearch.lay new file mode 100644 index 0000000..4a607e6 --- /dev/null +++ b/search/layouts/trickySearch.lay @@ -0,0 +1,7 @@ +%%%%%%%%%%%%%%%%%%%% +%. ..% % +%.%%.%%.%%.%%.%% % % +% P % % +%%%%%%%%%%%%%%%%%% % +%..... % +%%%%%%%%%%%%%%%%%%%% diff --git a/search/pacman.py b/search/pacman.py new file mode 100644 index 0000000..740451d --- /dev/null +++ b/search/pacman.py @@ -0,0 +1,684 @@ +# pacman.py +# --------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +""" +Pacman.py holds the logic for the classic pacman game along with the main +code to run a game. This file is divided into three sections: + + (i) Your interface to the pacman world: + Pacman is a complex environment. You probably don't want to + read through all of the code we wrote to make the game runs + correctly. This section contains the parts of the code + that you will need to understand in order to complete the + project. There is also some code in game.py that you should + understand. + + (ii) The hidden secrets of pacman: + This section contains all of the logic code that the pacman + environment uses to decide who can move where, who dies when + things collide, etc. You shouldn't need to read this section + of code, but you can if you want. + + (iii) Framework to start a game: + The final section contains the code for reading the command + you use to set up the game, then starting up a new game, along with + linking in all the external parts (agent functions, graphics). + Check this section out to see all the options available to you. + +To play your first game, type 'python pacman.py' from the command line. +The keys are 'a', 's', 'd', and 'w' to move (or arrow keys). Have fun! +""" +from game import GameStateData +from game import Game +from game import Directions +from game import Actions +from util import nearestPoint +from util import manhattanDistance +import util, layout +import sys, types, time, random, os + +################################################### +# YOUR INTERFACE TO THE PACMAN WORLD: A GameState # +################################################### + +class GameState: + """ + A GameState specifies the full game state, including the food, capsules, + agent configurations and score changes. + + GameStates are used by the Game object to capture the actual state of the game and + can be used by agents to reason about the game. + + Much of the information in a GameState is stored in a GameStateData object. We + strongly suggest that you access that data via the accessor methods below rather + than referring to the GameStateData object directly. + + Note that in classic Pacman, Pacman is always agent 0. + """ + + #################################################### + # Accessor methods: use these to access state data # + #################################################### + + # static variable keeps track of which states have had getLegalActions called + explored = set() + def getAndResetExplored(): + tmp = GameState.explored.copy() + GameState.explored = set() + return tmp + getAndResetExplored = staticmethod(getAndResetExplored) + + def getLegalActions( self, agentIndex=0 ): + """ + Returns the legal actions for the agent specified. + """ +# GameState.explored.add(self) + if self.isWin() or self.isLose(): return [] + + if agentIndex == 0: # Pacman is moving + return PacmanRules.getLegalActions( self ) + else: + return GhostRules.getLegalActions( self, agentIndex ) + + def generateSuccessor( self, agentIndex, action): + """ + Returns the successor state after the specified agent takes the action. + """ + # Check that successors exist + if self.isWin() or self.isLose(): raise Exception('Can\'t generate a successor of a terminal state.') + + # Copy current state + state = GameState(self) + + # Let agent's logic deal with its action's effects on the board + if agentIndex == 0: # Pacman is moving + state.data._eaten = [False for i in range(state.getNumAgents())] + PacmanRules.applyAction( state, action ) + else: # A ghost is moving + GhostRules.applyAction( state, action, agentIndex ) + + # Time passes + if agentIndex == 0: + state.data.scoreChange += -TIME_PENALTY # Penalty for waiting around + else: + GhostRules.decrementTimer( state.data.agentStates[agentIndex] ) + + # Resolve multi-agent effects + GhostRules.checkDeath( state, agentIndex ) + + # Book keeping + state.data._agentMoved = agentIndex + state.data.score += state.data.scoreChange + GameState.explored.add(self) + GameState.explored.add(state) + return state + + def getLegalPacmanActions( self ): + return self.getLegalActions( 0 ) + + def generatePacmanSuccessor( self, action ): + """ + Generates the successor state after the specified pacman move + """ + return self.generateSuccessor( 0, action ) + + def getPacmanState( self ): + """ + Returns an AgentState object for pacman (in game.py) + + state.pos gives the current position + state.direction gives the travel vector + """ + return self.data.agentStates[0].copy() + + def getPacmanPosition( self ): + return self.data.agentStates[0].getPosition() + + def getGhostStates( self ): + return self.data.agentStates[1:] + + def getGhostState( self, agentIndex ): + if agentIndex == 0 or agentIndex >= self.getNumAgents(): + raise Exception("Invalid index passed to getGhostState") + return self.data.agentStates[agentIndex] + + def getGhostPosition( self, agentIndex ): + if agentIndex == 0: + raise Exception("Pacman's index passed to getGhostPosition") + return self.data.agentStates[agentIndex].getPosition() + + def getGhostPositions(self): + return [s.getPosition() for s in self.getGhostStates()] + + def getNumAgents( self ): + return len( self.data.agentStates ) + + def getScore( self ): + return float(self.data.score) + + def getCapsules(self): + """ + Returns a list of positions (x,y) of the remaining capsules. + """ + return self.data.capsules + + def getNumFood( self ): + return self.data.food.count() + + def getFood(self): + """ + Returns a Grid of boolean food indicator variables. + + Grids can be accessed via list notation, so to check + if there is food at (x,y), just call + + currentFood = state.getFood() + if currentFood[x][y] == True: ... + """ + return self.data.food + + def getWalls(self): + """ + Returns a Grid of boolean wall indicator variables. + + Grids can be accessed via list notation, so to check + if there is a wall at (x,y), just call + + walls = state.getWalls() + if walls[x][y] == True: ... + """ + return self.data.layout.walls + + def hasFood(self, x, y): + return self.data.food[x][y] + + def hasWall(self, x, y): + return self.data.layout.walls[x][y] + + def isLose( self ): + return self.data._lose + + def isWin( self ): + return self.data._win + + ############################################# + # Helper methods: # + # You shouldn't need to call these directly # + ############################################# + + def __init__( self, prevState = None ): + """ + Generates a new state by copying information from its predecessor. + """ + if prevState != None: # Initial state + self.data = GameStateData(prevState.data) + else: + self.data = GameStateData() + + def deepCopy( self ): + state = GameState( self ) + state.data = self.data.deepCopy() + return state + + def __eq__( self, other ): + """ + Allows two states to be compared. + """ + return hasattr(other, 'data') and self.data == other.data + + def __hash__( self ): + """ + Allows states to be keys of dictionaries. + """ + return hash( self.data ) + + def __str__( self ): + + return str(self.data) + + def initialize( self, layout, numGhostAgents=1000 ): + """ + Creates an initial game state from a layout array (see layout.py). + """ + self.data.initialize(layout, numGhostAgents) + +############################################################################ +# THE HIDDEN SECRETS OF PACMAN # +# # +# You shouldn't need to look through the code in this section of the file. # +############################################################################ + +SCARED_TIME = 40 # Moves ghosts are scared +COLLISION_TOLERANCE = 0.7 # How close ghosts must be to Pacman to kill +TIME_PENALTY = 1 # Number of points lost each round + +class ClassicGameRules: + """ + These game rules manage the control flow of a game, deciding when + and how the game starts and ends. + """ + def __init__(self, timeout=30): + self.timeout = timeout + + def newGame( self, layout, pacmanAgent, ghostAgents, display, quiet = False, catchExceptions=False): + agents = [pacmanAgent] + ghostAgents[:layout.getNumGhosts()] + initState = GameState() + initState.initialize( layout, len(ghostAgents) ) + game = Game(agents, display, self, catchExceptions=catchExceptions) + game.state = initState + self.initialState = initState.deepCopy() + self.quiet = quiet + return game + + def process(self, state, game): + """ + Checks to see whether it is time to end the game. + """ + if state.isWin(): self.win(state, game) + if state.isLose(): self.lose(state, game) + + def win( self, state, game ): + if not self.quiet: print "Pacman emerges victorious! Score: %d" % state.data.score + game.gameOver = True + + def lose( self, state, game ): + if not self.quiet: print "Pacman died! Score: %d" % state.data.score + game.gameOver = True + + def getProgress(self, game): + return float(game.state.getNumFood()) / self.initialState.getNumFood() + + def agentCrash(self, game, agentIndex): + if agentIndex == 0: + print "Pacman crashed" + else: + print "A ghost crashed" + + def getMaxTotalTime(self, agentIndex): + return self.timeout + + def getMaxStartupTime(self, agentIndex): + return self.timeout + + def getMoveWarningTime(self, agentIndex): + return self.timeout + + def getMoveTimeout(self, agentIndex): + return self.timeout + + def getMaxTimeWarnings(self, agentIndex): + return 0 + +class PacmanRules: + """ + These functions govern how pacman interacts with his environment under + the classic game rules. + """ + PACMAN_SPEED=1 + + def getLegalActions( state ): + """ + Returns a list of possible actions. + """ + return Actions.getPossibleActions( state.getPacmanState().configuration, state.data.layout.walls ) + getLegalActions = staticmethod( getLegalActions ) + + def applyAction( state, action ): + """ + Edits the state to reflect the results of the action. + """ + legal = PacmanRules.getLegalActions( state ) + if action not in legal: + raise Exception("Illegal action " + str(action)) + + pacmanState = state.data.agentStates[0] + + # Update Configuration + vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED ) + pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector ) + + # Eat + next = pacmanState.configuration.getPosition() + nearest = nearestPoint( next ) + if manhattanDistance( nearest, next ) <= 0.5 : + # Remove food + PacmanRules.consume( nearest, state ) + applyAction = staticmethod( applyAction ) + + def consume( position, state ): + x,y = position + # Eat food + if state.data.food[x][y]: + state.data.scoreChange += 10 + state.data.food = state.data.food.copy() + state.data.food[x][y] = False + state.data._foodEaten = position + # TODO: cache numFood? + numFood = state.getNumFood() + if numFood == 0 and not state.data._lose: + state.data.scoreChange += 500 + state.data._win = True + # Eat capsule + if( position in state.getCapsules() ): + state.data.capsules.remove( position ) + state.data._capsuleEaten = position + # Reset all ghosts' scared timers + for index in range( 1, len( state.data.agentStates ) ): + state.data.agentStates[index].scaredTimer = SCARED_TIME + consume = staticmethod( consume ) + +class GhostRules: + """ + These functions dictate how ghosts interact with their environment. + """ + GHOST_SPEED=1.0 + def getLegalActions( state, ghostIndex ): + """ + Ghosts cannot stop, and cannot turn around unless they + reach a dead end, but can turn 90 degrees at intersections. + """ + conf = state.getGhostState( ghostIndex ).configuration + possibleActions = Actions.getPossibleActions( conf, state.data.layout.walls ) + reverse = Actions.reverseDirection( conf.direction ) + if Directions.STOP in possibleActions: + possibleActions.remove( Directions.STOP ) + if reverse in possibleActions and len( possibleActions ) > 1: + possibleActions.remove( reverse ) + return possibleActions + getLegalActions = staticmethod( getLegalActions ) + + def applyAction( state, action, ghostIndex): + + legal = GhostRules.getLegalActions( state, ghostIndex ) + if action not in legal: + raise Exception("Illegal ghost action " + str(action)) + + ghostState = state.data.agentStates[ghostIndex] + speed = GhostRules.GHOST_SPEED + if ghostState.scaredTimer > 0: speed /= 2.0 + vector = Actions.directionToVector( action, speed ) + ghostState.configuration = ghostState.configuration.generateSuccessor( vector ) + applyAction = staticmethod( applyAction ) + + def decrementTimer( ghostState): + timer = ghostState.scaredTimer + if timer == 1: + ghostState.configuration.pos = nearestPoint( ghostState.configuration.pos ) + ghostState.scaredTimer = max( 0, timer - 1 ) + decrementTimer = staticmethod( decrementTimer ) + + def checkDeath( state, agentIndex): + pacmanPosition = state.getPacmanPosition() + if agentIndex == 0: # Pacman just moved; Anyone can kill him + for index in range( 1, len( state.data.agentStates ) ): + ghostState = state.data.agentStates[index] + ghostPosition = ghostState.configuration.getPosition() + if GhostRules.canKill( pacmanPosition, ghostPosition ): + GhostRules.collide( state, ghostState, index ) + else: + ghostState = state.data.agentStates[agentIndex] + ghostPosition = ghostState.configuration.getPosition() + if GhostRules.canKill( pacmanPosition, ghostPosition ): + GhostRules.collide( state, ghostState, agentIndex ) + checkDeath = staticmethod( checkDeath ) + + def collide( state, ghostState, agentIndex): + if ghostState.scaredTimer > 0: + state.data.scoreChange += 200 + GhostRules.placeGhost(state, ghostState) + ghostState.scaredTimer = 0 + # Added for first-person + state.data._eaten[agentIndex] = True + else: + if not state.data._win: + state.data.scoreChange -= 500 + state.data._lose = True + collide = staticmethod( collide ) + + def canKill( pacmanPosition, ghostPosition ): + return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE + canKill = staticmethod( canKill ) + + def placeGhost(state, ghostState): + ghostState.configuration = ghostState.start + placeGhost = staticmethod( placeGhost ) + +############################# +# FRAMEWORK TO START A GAME # +############################# + +def default(str): + return str + ' [Default: %default]' + +def parseAgentArgs(str): + if str == None: return {} + pieces = str.split(',') + opts = {} + for p in pieces: + if '=' in p: + key, val = p.split('=') + else: + key,val = p, 1 + opts[key] = val + return opts + +def readCommand( argv ): + """ + Processes the command used to run pacman from the command line. + """ + from optparse import OptionParser + usageStr = """ + USAGE: python pacman.py + EXAMPLES: (1) python pacman.py + - starts an interactive game + (2) python pacman.py --layout smallClassic --zoom 2 + OR python pacman.py -l smallClassic -z 2 + - starts an interactive game on a smaller board, zoomed in + """ + parser = OptionParser(usageStr) + + parser.add_option('-n', '--numGames', dest='numGames', type='int', + help=default('the number of GAMES to play'), metavar='GAMES', default=1) + parser.add_option('-l', '--layout', dest='layout', + help=default('the LAYOUT_FILE from which to load the map layout'), + metavar='LAYOUT_FILE', default='mediumClassic') + parser.add_option('-p', '--pacman', dest='pacman', + help=default('the agent TYPE in the pacmanAgents module to use'), + metavar='TYPE', default='KeyboardAgent') + parser.add_option('-t', '--textGraphics', action='store_true', dest='textGraphics', + help='Display output as text only', default=False) + parser.add_option('-q', '--quietTextGraphics', action='store_true', dest='quietGraphics', + help='Generate minimal output and no graphics', default=False) + parser.add_option('-g', '--ghosts', dest='ghost', + help=default('the ghost agent TYPE in the ghostAgents module to use'), + metavar = 'TYPE', default='RandomGhost') + parser.add_option('-k', '--numghosts', type='int', dest='numGhosts', + help=default('The maximum number of ghosts to use'), default=4) + parser.add_option('-z', '--zoom', type='float', dest='zoom', + help=default('Zoom the size of the graphics window'), default=1.0) + parser.add_option('-f', '--fixRandomSeed', action='store_true', dest='fixRandomSeed', + help='Fixes the random seed to always play the same game', default=False) + parser.add_option('-r', '--recordActions', action='store_true', dest='record', + help='Writes game histories to a file (named by the time they were played)', default=False) + parser.add_option('--replay', dest='gameToReplay', + help='A recorded game file (pickle) to replay', default=None) + parser.add_option('-a','--agentArgs',dest='agentArgs', + help='Comma separated values sent to agent. e.g. "opt1=val1,opt2,opt3=val3"') + parser.add_option('-x', '--numTraining', dest='numTraining', type='int', + help=default('How many episodes are training (suppresses output)'), default=0) + parser.add_option('--frameTime', dest='frameTime', type='float', + help=default('Time to delay between frames; <0 means keyboard'), default=0.1) + parser.add_option('-c', '--catchExceptions', action='store_true', dest='catchExceptions', + help='Turns on exception handling and timeouts during games', default=False) + parser.add_option('--timeout', dest='timeout', type='int', + help=default('Maximum length of time an agent can spend computing in a single game'), default=30) + + options, otherjunk = parser.parse_args(argv) + if len(otherjunk) != 0: + raise Exception('Command line input not understood: ' + str(otherjunk)) + args = dict() + + # Fix the random seed + if options.fixRandomSeed: random.seed('cs188') + + # Choose a layout + args['layout'] = layout.getLayout( options.layout ) + if args['layout'] == None: raise Exception("The layout " + options.layout + " cannot be found") + + # Choose a Pacman agent + noKeyboard = options.gameToReplay == None and (options.textGraphics or options.quietGraphics) + pacmanType = loadAgent(options.pacman, noKeyboard) + agentOpts = parseAgentArgs(options.agentArgs) + if options.numTraining > 0: + args['numTraining'] = options.numTraining + if 'numTraining' not in agentOpts: agentOpts['numTraining'] = options.numTraining + pacman = pacmanType(**agentOpts) # Instantiate Pacman with agentArgs + args['pacman'] = pacman + + # Don't display training games + if 'numTrain' in agentOpts: + options.numQuiet = int(agentOpts['numTrain']) + options.numIgnore = int(agentOpts['numTrain']) + + # Choose a ghost agent + ghostType = loadAgent(options.ghost, noKeyboard) + args['ghosts'] = [ghostType( i+1 ) for i in range( options.numGhosts )] + + # Choose a display format + if options.quietGraphics: + import textDisplay + args['display'] = textDisplay.NullGraphics() + elif options.textGraphics: + import textDisplay + textDisplay.SLEEP_TIME = options.frameTime + args['display'] = textDisplay.PacmanGraphics() + else: + import graphicsDisplay + args['display'] = graphicsDisplay.PacmanGraphics(options.zoom, frameTime = options.frameTime) + args['numGames'] = options.numGames + args['record'] = options.record + args['catchExceptions'] = options.catchExceptions + args['timeout'] = options.timeout + + # Special case: recorded games don't use the runGames method or args structure + if options.gameToReplay != None: + print 'Replaying recorded game %s.' % options.gameToReplay + import cPickle + f = open(options.gameToReplay) + try: recorded = cPickle.load(f) + finally: f.close() + recorded['display'] = args['display'] + replayGame(**recorded) + sys.exit(0) + + return args + +def loadAgent(pacman, nographics): + # Looks through all pythonPath Directories for the right module, + pythonPathStr = os.path.expandvars("$PYTHONPATH") + if pythonPathStr.find(';') == -1: + pythonPathDirs = pythonPathStr.split(':') + else: + pythonPathDirs = pythonPathStr.split(';') + pythonPathDirs.append('.') + + for moduleDir in pythonPathDirs: + if not os.path.isdir(moduleDir): continue + moduleNames = [f for f in os.listdir(moduleDir) if f.endswith('gents.py')] + for modulename in moduleNames: + try: + module = __import__(modulename[:-3]) + except ImportError: + continue + if pacman in dir(module): + if nographics and modulename == 'keyboardAgents.py': + raise Exception('Using the keyboard requires graphics (not text display)') + return getattr(module, pacman) + raise Exception('The agent ' + pacman + ' is not specified in any *Agents.py.') + +def replayGame( layout, actions, display ): + import pacmanAgents, ghostAgents + rules = ClassicGameRules() + agents = [pacmanAgents.GreedyAgent()] + [ghostAgents.RandomGhost(i+1) for i in range(layout.getNumGhosts())] + game = rules.newGame( layout, agents[0], agents[1:], display ) + state = game.state + display.initialize(state.data) + + for action in actions: + # Execute the action + state = state.generateSuccessor( *action ) + # Change the display + display.update( state.data ) + # Allow for game specific conditions (winning, losing, etc.) + rules.process(state, game) + + display.finish() + +def runGames( layout, pacman, ghosts, display, numGames, record, numTraining = 0, catchExceptions=False, timeout=30 ): + import __main__ + __main__.__dict__['_display'] = display + + rules = ClassicGameRules(timeout) + games = [] + + for i in range( numGames ): + beQuiet = i < numTraining + if beQuiet: + # Suppress output and graphics + import textDisplay + gameDisplay = textDisplay.NullGraphics() + rules.quiet = True + else: + gameDisplay = display + rules.quiet = False + game = rules.newGame( layout, pacman, ghosts, gameDisplay, beQuiet, catchExceptions) + game.run() + if not beQuiet: games.append(game) + + if record: + import time, cPickle + fname = ('recorded-game-%d' % (i + 1)) + '-'.join([str(t) for t in time.localtime()[1:6]]) + f = file(fname, 'w') + components = {'layout': layout, 'actions': game.moveHistory} + cPickle.dump(components, f) + f.close() + + if (numGames-numTraining) > 0: + scores = [game.state.getScore() for game in games] + wins = [game.state.isWin() for game in games] + winRate = wins.count(True)/ float(len(wins)) + print 'Average Score:', sum(scores) / float(len(scores)) + print 'Scores: ', ', '.join([str(score) for score in scores]) + print 'Win Rate: %d/%d (%.2f)' % (wins.count(True), len(wins), winRate) + print 'Record: ', ', '.join([ ['Loss', 'Win'][int(w)] for w in wins]) + + return games + +if __name__ == '__main__': + """ + The main function called when pacman.py is run + from the command line: + + > python pacman.py + + See the usage string for more details. + + > python pacman.py --help + """ + args = readCommand( sys.argv[1:] ) # Get game components based on input + runGames( **args ) + + # import cProfile + # cProfile.run("runGames( **args )") + pass diff --git a/search/pacman.pyc b/search/pacman.pyc new file mode 100644 index 0000000..bd60d8a Binary files /dev/null and b/search/pacman.pyc differ diff --git a/search/pacmanAgents.py b/search/pacmanAgents.py new file mode 100644 index 0000000..ae97634 --- /dev/null +++ b/search/pacmanAgents.py @@ -0,0 +1,52 @@ +# pacmanAgents.py +# --------------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +from pacman import Directions +from game import Agent +import random +import game +import util + +class LeftTurnAgent(game.Agent): + "An agent that turns left at every opportunity" + + def getAction(self, state): + legal = state.getLegalPacmanActions() + current = state.getPacmanState().configuration.direction + if current == Directions.STOP: current = Directions.NORTH + left = Directions.LEFT[current] + if left in legal: return left + if current in legal: return current + if Directions.RIGHT[current] in legal: return Directions.RIGHT[current] + if Directions.LEFT[left] in legal: return Directions.LEFT[left] + return Directions.STOP + +class GreedyAgent(Agent): + def __init__(self, evalFn="scoreEvaluation"): + self.evaluationFunction = util.lookup(evalFn, globals()) + assert self.evaluationFunction != None + + def getAction(self, state): + # Generate candidate actions + legal = state.getLegalPacmanActions() + if Directions.STOP in legal: legal.remove(Directions.STOP) + + successors = [(state.generateSuccessor(0, action), action) for action in legal] + scored = [(self.evaluationFunction(state), action) for state, action in successors] + bestScore = max(scored)[0] + bestActions = [pair[1] for pair in scored if pair[0] == bestScore] + return random.choice(bestActions) + +def scoreEvaluation(state): + return state.getScore() diff --git a/search/pacmanAgents.pyc b/search/pacmanAgents.pyc new file mode 100644 index 0000000..8ab3722 Binary files /dev/null and b/search/pacmanAgents.pyc differ diff --git a/search/projectParams.py b/search/projectParams.py new file mode 100644 index 0000000..dc3e9d1 --- /dev/null +++ b/search/projectParams.py @@ -0,0 +1,18 @@ +# projectParams.py +# ---------------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +STUDENT_CODE_DEFAULT = 'searchAgents.py,search.py' +PROJECT_TEST_CLASSES = 'searchTestClasses.py' +PROJECT_NAME = 'Project 1: Search' +BONUS_PIC = False diff --git a/search/search.py b/search/search.py new file mode 100644 index 0000000..c5c196d --- /dev/null +++ b/search/search.py @@ -0,0 +1,191 @@ +# search.py +# --------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +""" +In search.py, you will implement generic search algorithms which are called by +Pacman agents (in searchAgents.py). +""" + +import util + +class SearchProblem: + """ + This class outlines the structure of a search problem, but doesn't implement + any of the methods (in object-oriented terminology: an abstract class). + + You do not need to change anything in this class, ever. + """ + + def getStartState(self): + """ + Returns the start state for the search problem. + """ + util.raiseNotDefined() + + def isGoalState(self, state): + """ + state: Search state + + Returns True if and only if the state is a valid goal state. + """ + util.raiseNotDefined() + + def getSuccessors(self, state): + """ + state: Search state + + For a given state, this should return a list of triples, (successor, + action, stepCost), where 'successor' is a successor to the current + state, 'action' is the action required to get there, and 'stepCost' is + the incremental cost of expanding to that successor. + """ + util.raiseNotDefined() + + def getCostOfActions(self, actions): + """ + actions: A list of actions to take + + This method returns the total cost of a particular sequence of actions. + The sequence must be composed of legal moves. + """ + util.raiseNotDefined() + + +def tinyMazeSearch(problem): + """ + Returns a sequence of moves that solves tinyMaze. For any other maze, the + sequence of moves will be incorrect, so only use this for tinyMaze. + """ + from game import Directions + s = Directions.SOUTH + w = Directions.WEST + return [s, s, w, s, w, w, s, w] + +def depthFirstSearch(problem): + """ + Search the deepest nodes in the search tree first. + + Your search algorithm needs to return a list of actions that reaches the + goal. Make sure to implement a graph search algorithm. + + To get started, you might want to try some of these simple commands to + understand the search problem that is being passed in: + + print "Start:", problem.getStartState() + print "Is the start a goal?", problem.isGoalState(problem.getStartState()) + print "Start's successors:", problem.getSuccessors(problem.getStartState()) + """ + "*** YOUR CODE HERE ***" +# start state + startState = problem.getStartState() +# have exit + exitState = [] +#use stack to dfs + States = util.Stack() + States.push((startState,[])) +#repeat a circle to confirm if it is successful + while (not States.isEmpty()) and (not problem.isGoalState(startState)): + State,Actions = States.pop() + if State not in exitState: + exitState.append(State) + Successor = problem.getSuccessors(State) + for Node in Successor: + Coordinates = Node[0] + Direction = Node[1] + if not Coordinates in exitState: + States.push((Coordinates,Actions + [Direction])) + startState = Coordinates + return Actions + [Direction] + util.raiseNotDefined() + +def breadthFirstSearch(problem): + """Search the shallowest nodes in the search tree first.""" + "*** YOUR CODE HERE ***" + startState = problem.getStartState() + exitState = [] + States = util.Queue() + States.push((startState,[])) + while (not States.isEmpty()) and (not problem.isGoalState(startState)): + State, Actions = States.pop() + if State not in exitState: + Successor = problem.getSuccessors(State) + exitState.append(State) + for Node in Successor: + Coordinates = Node[0] + Direction = Node[1] + if Coordinates not in exitState: + States.push((Coordinates,Actions+[Direction])) + startState = Coordinates + return Actions + [Direction] + util.raiseNotDefined() + +def uniformCostSearch(problem): + """Search the node of least total cost first.""" + "*** YOUR CODE HERE ***" + startState = problem.getStartState() + exitState = [] + States = util.PriorityQueue() + States.push((startState, []),0) + while (not States.isEmpty()) and (not problem.isGoalState(startState)): + State, Actions = States.pop() + if State not in exitState: + Successor = problem.getSuccessors(State) + exitState.append(State) + for Node in Successor: + Coordinates = Node[0] + Direction = Node[1] + if Coordinates not in exitState: + newAction = Actions + [Direction] + States.push((Coordinates, newAction),problem.getCostOfActions(newAction)) + startState = Coordinates + return Actions + [Direction] + util.raiseNotDefined() + +def nullHeuristic(state, problem=None): + """ + A heuristic function estimates the cost from the current state to the nearest + goal in the provided SearchProblem. This heuristic is trivial. + """ + return 0 + +def aStarSearch(problem, heuristic=nullHeuristic): + """Search the node that has the lowest combined cost and heuristic first.""" + "*** YOUR CODE HERE ***" + startState = problem.getStartState() + exitState = [] + States = util.PriorityQueue() + h_n = heuristic(startState,problem) + States.push((startState, []), h_n) + while (not States.isEmpty()) and (not problem.isGoalState(startState)): + State, Actions = States.pop() + if State not in exitState: + Successor = problem.getSuccessors(State) + exitState.append(State) + for Node in Successor: + Coordinates = Node[0] + Direction = Node[1] + if Coordinates not in exitState: + newAction = Actions + [Direction] + newCost = problem.getCostOfActions(newAction) + heuristic(Coordinates,problem) + States.push((Coordinates, newAction), newCost) + startState = Coordinates + return Actions + [Direction] + util.raiseNotDefined() + + +# Abbreviations +bfs = breadthFirstSearch +dfs = depthFirstSearch +astar = aStarSearch +ucs = uniformCostSearch diff --git a/search/search.pyc b/search/search.pyc new file mode 100644 index 0000000..3fa9074 Binary files /dev/null and b/search/search.pyc differ diff --git a/search/searchAgents.py b/search/searchAgents.py new file mode 100644 index 0000000..ff94805 --- /dev/null +++ b/search/searchAgents.py @@ -0,0 +1,654 @@ +# searchAgents.py +# --------------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +""" +This file contains all of the agents that can be selected to control Pacman. To +select an agent, use the '-p' option when running pacman.py. Arguments can be +passed to your agent using '-a'. For example, to load a SearchAgent that uses +depth first search (dfs), run the following command: + +> python pacman.py -p SearchAgent -a fn=depthFirstSearch + +Commands to invoke other search strategies can be found in the project +description. + +Please only change the parts of the file you are asked to. Look for the lines +that say + +"*** YOUR CODE HERE ***" + +The parts you fill in start about 3/4 of the way down. Follow the project +description for details. + +Good luck and happy searching! +""" + +from game import Directions +from game import Agent +from game import Actions +import util +import time +import search + +class GoWestAgent(Agent): + "An agent that goes West until it can't." + + def getAction(self, state): + "The agent receives a GameState (defined in pacman.py)." + if Directions.WEST in state.getLegalPacmanActions(): + return Directions.WEST + else: + return Directions.STOP + +####################################################### +# This portion is written for you, but will only work # +# after you fill in parts of search.py # +####################################################### + +class SearchAgent(Agent): + """ + This very general search agent finds a path using a supplied search + algorithm for a supplied search problem, then returns actions to follow that + path. + + As a default, this agent runs DFS on a PositionSearchProblem to find + location (1,1) + + Options for fn include: + depthFirstSearch or dfs + breadthFirstSearch or bfs + + + Note: You should NOT change any code in SearchAgent + """ + + def __init__(self, fn='depthFirstSearch', prob='PositionSearchProblem', heuristic='nullHeuristic'): + # Warning: some advanced Python magic is employed below to find the right functions and problems + + # Get the search function from the name and heuristic + if fn not in dir(search): + raise AttributeError, fn + ' is not a search function in search.py.' + func = getattr(search, fn) + if 'heuristic' not in func.func_code.co_varnames: + print('[SearchAgent] using function ' + fn) + self.searchFunction = func + else: + if heuristic in globals().keys(): + heur = globals()[heuristic] + elif heuristic in dir(search): + heur = getattr(search, heuristic) + else: + raise AttributeError, heuristic + ' is not a function in searchAgents.py or search.py.' + print('[SearchAgent] using function %s and heuristic %s' % (fn, heuristic)) + # Note: this bit of Python trickery combines the search algorithm and the heuristic + self.searchFunction = lambda x: func(x, heuristic=heur) + + # Get the search problem type from the name + if prob not in globals().keys() or not prob.endswith('Problem'): + raise AttributeError, prob + ' is not a search problem type in SearchAgents.py.' + self.searchType = globals()[prob] + print('[SearchAgent] using problem type ' + prob) + + def registerInitialState(self, state): + """ + This is the first time that the agent sees the layout of the game + board. Here, we choose a path to the goal. In this phase, the agent + should compute the path to the goal and store it in a local variable. + All of the work is done in this method! + + state: a GameState object (pacman.py) + """ + if self.searchFunction == None: raise Exception, "No search function provided for SearchAgent" + starttime = time.time() + problem = self.searchType(state) # Makes a new search problem + self.actions = self.searchFunction(problem) # Find a path + totalCost = problem.getCostOfActions(self.actions) + print('Path found with total cost of %d in %.1f seconds' % (totalCost, time.time() - starttime)) + if '_expanded' in dir(problem): print('Search nodes expanded: %d' % problem._expanded) + + def getAction(self, state): + """ + Returns the next action in the path chosen earlier (in + registerInitialState). Return Directions.STOP if there is no further + action to take. + + state: a GameState object (pacman.py) + """ + if 'actionIndex' not in dir(self): self.actionIndex = 0 + i = self.actionIndex + self.actionIndex += 1 + if i < len(self.actions): + return self.actions[i] + else: + return Directions.STOP + +class PositionSearchProblem(search.SearchProblem): + """ + A search problem defines the state space, start state, goal test, successor + function and cost function. This search problem can be used to find paths + to a particular point on the pacman board. + + The state space consists of (x,y) positions in a pacman game. + + Note: this search problem is fully specified; you should NOT change it. + """ + + def __init__(self, gameState, costFn = lambda x: 1, goal=(1,1), start=None, warn=True, visualize=True): + """ + Stores the start and goal. + + gameState: A GameState object (pacman.py) + costFn: A function from a search state (tuple) to a non-negative number + goal: A position in the gameState + """ + self.walls = gameState.getWalls() + self.startState = gameState.getPacmanPosition() + if start != None: self.startState = start + self.goal = goal + self.costFn = costFn + self.visualize = visualize + if warn and (gameState.getNumFood() != 1 or not gameState.hasFood(*goal)): + print 'Warning: this does not look like a regular search maze' + + # For display purposes + self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE + + def getStartState(self): + return self.startState + + def isGoalState(self, state): + isGoal = state == self.goal + + # For display purposes only + if isGoal and self.visualize: + self._visitedlist.append(state) + import __main__ + if '_display' in dir(__main__): + if 'drawExpandedCells' in dir(__main__._display): #@UndefinedVariable + __main__._display.drawExpandedCells(self._visitedlist) #@UndefinedVariable + + return isGoal + + def getSuccessors(self, state): + """ + Returns successor states, the actions they require, and a cost of 1. + + As noted in search.py: + For a given state, this should return a list of triples, + (successor, action, stepCost), where 'successor' is a + successor to the current state, 'action' is the action + required to get there, and 'stepCost' is the incremental + cost of expanding to that successor + """ + + successors = [] + for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]: + x,y = state + dx, dy = Actions.directionToVector(action) + nextx, nexty = int(x + dx), int(y + dy) + if not self.walls[nextx][nexty]: + nextState = (nextx, nexty) + cost = self.costFn(nextState) + successors.append( ( nextState, action, cost) ) + + # Bookkeeping for display purposes + self._expanded += 1 # DO NOT CHANGE + if state not in self._visited: + self._visited[state] = True + self._visitedlist.append(state) + + return successors + + def getCostOfActions(self, actions): + """ + Returns the cost of a particular sequence of actions. If those actions + include an illegal move, return 999999. + """ + if actions == None: return 999999 + x,y= self.getStartState() + cost = 0 + for action in actions: + # Check figure out the next state and see whether its' legal + dx, dy = Actions.directionToVector(action) + x, y = int(x + dx), int(y + dy) + if self.walls[x][y]: return 999999 + cost += self.costFn((x,y)) + return cost + +class StayEastSearchAgent(SearchAgent): + """ + An agent for position search with a cost function that penalizes being in + positions on the West side of the board. + + The cost function for stepping into a position (x,y) is 1/2^x. + """ + def __init__(self): + self.searchFunction = search.uniformCostSearch + costFn = lambda pos: .5 ** pos[0] + self.searchType = lambda state: PositionSearchProblem(state, costFn, (1, 1), None, False) + +class StayWestSearchAgent(SearchAgent): + """ + An agent for position search with a cost function that penalizes being in + positions on the East side of the board. + + The cost function for stepping into a position (x,y) is 2^x. + """ + def __init__(self): + self.searchFunction = search.uniformCostSearch + costFn = lambda pos: 2 ** pos[0] + self.searchType = lambda state: PositionSearchProblem(state, costFn) + +def manhattanHeuristic(position, problem, info={}): + "The Manhattan distance heuristic for a PositionSearchProblem" + xy1 = position + xy2 = problem.goal + return abs(xy1[0] - xy2[0]) + abs(xy1[1] - xy2[1]) + +def euclideanHeuristic(position, problem, info={}): + "The Euclidean distance heuristic for a PositionSearchProblem" + xy1 = position + xy2 = problem.goal + return ( (xy1[0] - xy2[0]) ** 2 + (xy1[1] - xy2[1]) ** 2 ) ** 0.5 + +##################################################### +# This portion is incomplete. Time to write code! # +##################################################### + +class CornersProblem(search.SearchProblem): + """ + This search problem finds paths through all four corners of a layout. + + You must select a suitable state space and successor function + """ + + def __init__(self, startingGameState): + """ + Stores the walls, pacman's starting position and corners. + """ + self.walls = startingGameState.getWalls() + self.startingPosition = startingGameState.getPacmanPosition() + top, right = self.walls.height-2, self.walls.width-2 + self.corners = ((1,1), (1,top), (right, 1), (right, top)) + for corner in self.corners: + if not startingGameState.hasFood(*corner): + print 'Warning: no food in corner ' + str(corner) + self._expanded = 0 # DO NOT CHANGE; Number of search nodes expanded + # Please add any code here which you would like to use + # in initializing the problem + "*** YOUR CODE HERE ***" + self.top = top + self.right = right + + def getStartState(self): + """ + Returns the start state (in your state space, not the full Pacman state + space) + """ + "*** YOUR CODE HERE ***" + allCorners = (False,False,False,False) + startState = (self.startingPosition,allCorners) + return startState + util.raiseNotDefined() + + def isGoalState(self, state): + """ + Returns whether this search state is a goal state of the problem. + """ + "*** YOUR CODE HERE ***" + Corners = state[1] + return Corners[0] and Corners[1] and Corners[2] and Corners[3] + util.raiseNotDefined() + + def getSuccessors(self, state): + """ + Returns successor states, the actions they require, and a cost of 1. + + As noted in search.py: + For a given state, this should return a list of triples, (successor, + action, stepCost), where 'successor' is a successor to the current + state, 'action' is the action required to get there, and 'stepCost' + is the incremental cost of expanding to that successor + """ + + successors = [] + for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]: + # Add a successor state to the successor list if the action is legal + # Here's a code snippet for figuring out whether a new position hits a wall: + # x,y = currentPosition + # dx, dy = Actions.directionToVector(action) + # nextx, nexty = int(x + dx), int(y + dy) + # hitsWall = self.walls[nextx][nexty] + + "*** YOUR CODE HERE ***" + x,y = state[0] + Corners = state[1] + Corners_0 = Corners[0] + Corners_1 = Corners[1] + Corners_2 = Corners[2] + Corners_3 = Corners[3] + dx , dy = Actions.directionToVector(action) + nextx, nexty = int(x + dx), int(y + dy) + hitsWall = self.walls[nextx][nexty] + newCorners = [] + newState = (nextx,nexty) + if not hitsWall: + if newState in self.corners: + if newState == (1,1): + newCorners = [True,Corners_1,Corners_2,Corners_3] + elif newState == (1,self.top): + newCorners = [Corners_0,True,Corners_2,Corners_3] + elif newState == (self.right,1): + newCorners = [Corners_0,Corners_1,True,Corners_3] + elif newState == (self.right,self.top): + newCorners = [Corners_0,Corners_1,Corners_2,True] + successor =((newState,newCorners),action,1) + else: + successor = ((newState,Corners),action,1) + successors.append(successor) + self._expanded += 1 # DO NOT CHANGE + return successors + + def getCostOfActions(self, actions): + """ + Returns the cost of a particular sequence of actions. If those actions + include an illegal move, return 999999. This is implemented for you. + """ + if actions == None: return 999999 + x,y= self.startingPosition + for action in actions: + dx, dy = Actions.directionToVector(action) + x, y = int(x + dx), int(y + dy) + if self.walls[x][y]: return 999999 + return len(actions) + + +def cornersHeuristic(state, problem): + """ + A heuristic for the CornersProblem that you defined. + + state: The current search state + (a data structure you chose in your search problem) + + problem: The CornersProblem instance for this layout. + + This function should always return a number that is a lower bound on the + shortest path from the state to a goal of the problem; i.e. it should be + admissible (as well as consistent). + """ + corners = problem.corners # These are the corner coordinates + walls = problem.walls # These are the walls of the maze, as a Grid (game.py) + + "*** YOUR CODE HERE ***" + currentPosition = state[0] + stateCorners = state[1] + top = walls.height - 2 + right = walls.width - 2 + Node = [] + for i in corners: + if i == (1,1): + if not stateCorners[0]: + Node.append(i) + elif i == (1,top): + if not stateCorners[1]: + Node.append(i) + elif i == (right,top): + if not stateCorners[2]: + Node.append(i) + elif i == (right,1): + if not stateCorners[3]: + Node.append(i) + cost = 0 + position = currentPosition + while len(Node) > 0: + distArr = [] + for i in range(0,len(Node)): + dist = util.manhattanDistance(position,Node[i]) + distArr.append(dist) + miniDist = min(distArr) + cost += miniDist + miniDist_I = distArr.index(miniDist) + position = Node[miniDist_I] + del Node[miniDist_I] + return cost # Default to trivial solution + +class AStarCornersAgent(SearchAgent): + "A SearchAgent for FoodSearchProblem using A* and your foodHeuristic" + def __init__(self): + self.searchFunction = lambda prob: search.aStarSearch(prob, cornersHeuristic) + self.searchType = CornersProblem + +class FoodSearchProblem: + """ + A search problem associated with finding the a path that collects all of the + food (dots) in a Pacman game. + + A search state in this problem is a tuple ( pacmanPosition, foodGrid ) where + pacmanPosition: a tuple (x,y) of integers specifying Pacman's position + foodGrid: a Grid (see game.py) of either True or False, specifying remaining food + """ + def __init__(self, startingGameState): + self.start = (startingGameState.getPacmanPosition(), startingGameState.getFood()) + self.walls = startingGameState.getWalls() + self.startingGameState = startingGameState + self._expanded = 0 # DO NOT CHANGE + self.heuristicInfo = {} # A dictionary for the heuristic to store information + + def getStartState(self): + return self.start + + def isGoalState(self, state): + return state[1].count() == 0 + + def getSuccessors(self, state): + "Returns successor states, the actions they require, and a cost of 1." + successors = [] + self._expanded += 1 # DO NOT CHANGE + for direction in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]: + x,y = state[0] + dx, dy = Actions.directionToVector(direction) + nextx, nexty = int(x + dx), int(y + dy) + if not self.walls[nextx][nexty]: + nextFood = state[1].copy() + nextFood[nextx][nexty] = False + successors.append( ( ((nextx, nexty), nextFood), direction, 1) ) + return successors + + def getCostOfActions(self, actions): + """Returns the cost of a particular sequence of actions. If those actions + include an illegal move, return 999999""" + x,y= self.getStartState()[0] + cost = 0 + for action in actions: + # figure out the next state and see whether it's legal + dx, dy = Actions.directionToVector(action) + x, y = int(x + dx), int(y + dy) + if self.walls[x][y]: + return 999999 + cost += 1 + return cost + +class AStarFoodSearchAgent(SearchAgent): + "A SearchAgent for FoodSearchProblem using A* and your foodHeuristic" + def __init__(self): + self.searchFunction = lambda prob: search.aStarSearch(prob, foodHeuristic) + self.searchType = FoodSearchProblem + +def foodHeuristic(state, problem): + """ + Your heuristic for the FoodSearchProblem goes here. + + This heuristic must be consistent to ensure correctness. First, try to come + up with an admissible heuristic; almost all admissible heuristics will be + consistent as well. + + If using A* ever finds a solution that is worse uniform cost search finds, + your heuristic is *not* consistent, and probably not admissible! On the + other hand, inadmissible or inconsistent heuristics may find optimal + solutions, so be careful. + + The state is a tuple ( pacmanPosition, foodGrid ) where foodGrid is a Grid + (see game.py) of either True or False. You can call foodGrid.asList() to get + a list of food coordinates instead. + + If you want access to info like walls, capsules, etc., you can query the + problem. For example, problem.walls gives you a Grid of where the walls + are. + + If you want to *store* information to be reused in other calls to the + heuristic, there is a dictionary called problem.heuristicInfo that you can + use. For example, if you only want to count the walls once and store that + value, try: problem.heuristicInfo['wallCount'] = problem.walls.count() + Subsequent calls to this heuristic can access + problem.heuristicInfo['wallCount'] + """ + position, foodGrid = state + "*** YOUR CODE HERE ***" + hvalue = 0 + foodAvailable = [] + totalDistance = 0 + for i in range(0,foodGrid.width): + for j in range(0,foodGrid.height): + if foodGrid[i][j] == True: + foodLocation = (i,j) + foodAvailable.append(foodLocation) + if len(foodAvailable) == 0: + return 0 + maxDistance = ((0,0),(0,0),0) + for currentFood in foodAvailable: + for selectFood in foodAvailable: + if currentFood == selectFood: + pass + else: + distance = util.manhattanDistance(currentFood,selectFood) + if maxDistance[2] < distance: + maxDistance = (currentFood,selectFood,distance) + if maxDistance[0] == (0,0) and maxDistance[1] == (0,0): + hvalue = util.manhattanDistance(position,foodAvailable[0]) + else: + dis_1 = util.manhattanDistance(position,maxDistance[0]) + dis_2 = util.manhattanDistance(position,maxDistance[1]) + hvalue = min(dis_1,dis_2) + maxDistance[2] + return hvalue + +class ClosestDotSearchAgent(SearchAgent): + "Search for all food using a sequence of searches" + def registerInitialState(self, state): + self.actions = [] + currentState = state + while(currentState.getFood().count() > 0): + nextPathSegment = self.findPathToClosestDot(currentState) # The missing piece + self.actions += nextPathSegment + for action in nextPathSegment: + legal = currentState.getLegalActions() + if action not in legal: + t = (str(action), str(currentState)) + raise Exception, 'findPathToClosestDot returned an illegal move: %s!\n%s' % t + currentState = currentState.generateSuccessor(0, action) + self.actionIndex = 0 + print 'Path found with cost %d.' % len(self.actions) + + def findPathToClosestDot(self, gameState): + """ + Returns a path (a list of actions) to the closest dot, starting from + gameState. + """ + # Here are some useful elements of the startState + startPosition = gameState.getPacmanPosition() + food = gameState.getFood() + walls = gameState.getWalls() + problem = AnyFoodSearchProblem(gameState) + + "*** YOUR CODE HERE ***" + Result = [] + Visited = [] + Heap = util.PriorityQueue() + startState = (problem.getStartState(),[],0) + Heap.push(startState,startState[2]) + while not Heap.isEmpty(): + (state,path,cost) = Heap.pop() + if problem.isGoalState(state): + Result = path + break + if state not in Visited: + Visited.append(state) + for currentState,currentPath,currentCost in problem.getSuccessors(state): + newPath = path + [currentPath] + newCost = cost + currentCost + newState = (currentState,newPath,newCost) + Heap.push(newState,newCost) + return Result + util.raiseNotDefined() + +class AnyFoodSearchProblem(PositionSearchProblem): + """ + A search problem for finding a path to any food. + + This search problem is just like the PositionSearchProblem, but has a + different goal test, which you need to fill in below. The state space and + successor function do not need to be changed. + + The class definition above, AnyFoodSearchProblem(PositionSearchProblem), + inherits the methods of the PositionSearchProblem. + + You can use this search problem to help you fill in the findPathToClosestDot + method. + """ + + def __init__(self, gameState): + "Stores information from the gameState. You don't need to change this." + # Store the food for later reference + self.food = gameState.getFood() + + # Store info for the PositionSearchProblem (no need to change this) + self.walls = gameState.getWalls() + self.startState = gameState.getPacmanPosition() + self.costFn = lambda x: 1 + self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE + + def isGoalState(self, state): + """ + The state is Pacman's position. Fill this in with a goal test that will + complete the problem definition. + """ + x,y = state + + "*** YOUR CODE HERE ***" + + foodGrid = self.food + if foodGrid[x][y] == True or foodGrid.count() == 0: + return True + else: + return False + util.raiseNotDefined() + + + +def mazeDistance(point1, point2, gameState): + """ + Returns the maze distance between any two points, using the search functions + you have already built. The gameState can be any game state -- Pacman's + position in that state is ignored. + + Example usage: mazeDistance( (2,4), (5,6), gameState) + + This might be a useful helper function for your ApproximateSearchAgent. + """ + x1, y1 = point1 + x2, y2 = point2 + walls = gameState.getWalls() + assert not walls[x1][y1], 'point1 is a wall: ' + str(point1) + assert not walls[x2][y2], 'point2 is a wall: ' + str(point2) + prob = PositionSearchProblem(gameState, start=point1, goal=point2, warn=False, visualize=False) + return len(search.bfs(prob)) diff --git a/search/searchAgents.pyc b/search/searchAgents.pyc new file mode 100644 index 0000000..13b6667 Binary files /dev/null and b/search/searchAgents.pyc differ diff --git a/search/searchTestClasses.py b/search/searchTestClasses.py new file mode 100644 index 0000000..1e985a2 --- /dev/null +++ b/search/searchTestClasses.py @@ -0,0 +1,821 @@ +# searchTestClasses.py +# -------------------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +import re +import testClasses +import textwrap + +# import project specific code +import layout +import pacman +from search import SearchProblem + +# helper function for printing solutions in solution files +def wrap_solution(solution): + if type(solution) == type([]): + return '\n'.join(textwrap.wrap(' '.join(solution))) + else: + return str(solution) + + + + +def followAction(state, action, problem): + for successor1, action1, cost1 in problem.getSuccessors(state): + if action == action1: return successor1 + return None + +def followPath(path, problem): + state = problem.getStartState() + states = [state] + for action in path: + state = followAction(state, action, problem) + states.append(state) + return states + +def checkSolution(problem, path): + state = problem.getStartState() + for action in path: + state = followAction(state, action, problem) + return problem.isGoalState(state) + +# Search problem on a plain graph +class GraphSearch(SearchProblem): + + # Read in the state graph; define start/end states, edges and costs + def __init__(self, graph_text): + self.expanded_states = [] + lines = graph_text.split('\n') + r = re.match('start_state:(.*)', lines[0]) + if r == None: + print "Broken graph:" + print '"""%s"""' % graph_text + raise Exception("GraphSearch graph specification start_state not found or incorrect on line:" + l) + self.start_state = r.group(1).strip() + r = re.match('goal_states:(.*)', lines[1]) + if r == None: + print "Broken graph:" + print '"""%s"""' % graph_text + raise Exception("GraphSearch graph specification goal_states not found or incorrect on line:" + l) + goals = r.group(1).split() + self.goals = map(str.strip, goals) + self.successors = {} + all_states = set() + self.orderedSuccessorTuples = [] + for l in lines[2:]: + if len(l.split()) == 3: + start, action, next_state = l.split() + cost = 1 + elif len(l.split()) == 4: + start, action, next_state, cost = l.split() + else: + print "Broken graph:" + print '"""%s"""' % graph_text + raise Exception("Invalid line in GraphSearch graph specification on line:" + l) + cost = float(cost) + self.orderedSuccessorTuples.append((start, action, next_state, cost)) + all_states.add(start) + all_states.add(next_state) + if start not in self.successors: + self.successors[start] = [] + self.successors[start].append((next_state, action, cost)) + for s in all_states: + if s not in self.successors: + self.successors[s] = [] + + # Get start state + def getStartState(self): + return self.start_state + + # Check if a state is a goal state + def isGoalState(self, state): + return state in self.goals + + # Get all successors of a state + def getSuccessors(self, state): + self.expanded_states.append(state) + return list(self.successors[state]) + + # Calculate total cost of a sequence of actions + def getCostOfActions(self, actions): + total_cost = 0 + state = self.start_state + for a in actions: + successors = self.successors[state] + match = False + for (next_state, action, cost) in successors: + if a == action: + state = next_state + total_cost += cost + match = True + if not match: + print 'invalid action sequence' + sys.exit(1) + return total_cost + + # Return a list of all states on which 'getSuccessors' was called + def getExpandedStates(self): + return self.expanded_states + + def __str__(self): + print self.successors + edges = ["%s %s %s %s" % t for t in self.orderedSuccessorTuples] + return \ +"""start_state: %s +goal_states: %s +%s""" % (self.start_state, " ".join(self.goals), "\n".join(edges)) + + + +def parseHeuristic(heuristicText): + heuristic = {} + for line in heuristicText.split('\n'): + tokens = line.split() + if len(tokens) != 2: + print "Broken heuristic:" + print '"""%s"""' % graph_text + raise Exception("GraphSearch heuristic specification broken:" + l) + state, h = tokens + heuristic[state] = float(h) + + def graphHeuristic(state, problem=None): + if state in heuristic: + return heuristic[state] + else: + pp = pprint.PrettyPrinter(indent=4) + print "Heuristic:" + pp.pprint(heuristic) + raise Exception("Graph heuristic called with invalid state: " + str(state)) + + return graphHeuristic + + +class GraphSearchTest(testClasses.TestCase): + + def __init__(self, question, testDict): + super(GraphSearchTest, self).__init__(question, testDict) + self.graph_text = testDict['graph'] + self.alg = testDict['algorithm'] + self.diagram = testDict['diagram'] + self.exactExpansionOrder = testDict.get('exactExpansionOrder', 'True').lower() == "true" + if 'heuristic' in testDict: + self.heuristic = parseHeuristic(testDict['heuristic']) + else: + self.heuristic = None + + # Note that the return type of this function is a tripple: + # (solution, expanded states, error message) + def getSolInfo(self, search): + alg = getattr(search, self.alg) + problem = GraphSearch(self.graph_text) + if self.heuristic != None: + solution = alg(problem, self.heuristic) + else: + solution = alg(problem) + + if type(solution) != type([]): + return None, None, 'The result of %s must be a list. (Instead, it is %s)' % (self.alg, type(solution)) + + return solution, problem.getExpandedStates(), None + + # Run student code. If an error message is returned, print error and return false. + # If a good solution is returned, printn the solution and return true; otherwise, + # print both the correct and student's solution and return false. + def execute(self, grades, moduleDict, solutionDict): + search = moduleDict['search'] + searchAgents = moduleDict['searchAgents'] + gold_solution = [str.split(solutionDict['solution']), str.split(solutionDict['rev_solution'])] + gold_expanded_states = [str.split(solutionDict['expanded_states']), str.split(solutionDict['rev_expanded_states'])] + + solution, expanded_states, error = self.getSolInfo(search) + if error != None: + grades.addMessage('FAIL: %s' % self.path) + grades.addMessage('\t%s' % error) + return False + + if solution in gold_solution and (not self.exactExpansionOrder or expanded_states in gold_expanded_states): + grades.addMessage('PASS: %s' % self.path) + grades.addMessage('\tsolution:\t\t%s' % solution) + grades.addMessage('\texpanded_states:\t%s' % expanded_states) + return True + else: + grades.addMessage('FAIL: %s' % self.path) + grades.addMessage('\tgraph:') + for line in self.diagram.split('\n'): + grades.addMessage('\t %s' % (line,)) + grades.addMessage('\tstudent solution:\t\t%s' % solution) + grades.addMessage('\tstudent expanded_states:\t%s' % expanded_states) + grades.addMessage('') + grades.addMessage('\tcorrect solution:\t\t%s' % gold_solution[0]) + grades.addMessage('\tcorrect expanded_states:\t%s' % gold_expanded_states[0]) + grades.addMessage('\tcorrect rev_solution:\t\t%s' % gold_solution[1]) + grades.addMessage('\tcorrect rev_expanded_states:\t%s' % gold_expanded_states[1]) + return False + + def writeSolution(self, moduleDict, filePath): + search = moduleDict['search'] + searchAgents = moduleDict['searchAgents'] + # open file and write comments + handle = open(filePath, 'w') + handle.write('# This is the solution file for %s.\n' % self.path) + handle.write('# This solution is designed to support both right-to-left\n') + handle.write('# and left-to-right implementations.\n') + + # write forward solution + solution, expanded_states, error = self.getSolInfo(search) + if error != None: raise Exception("Error in solution code: %s" % error) + handle.write('solution: "%s"\n' % ' '.join(solution)) + handle.write('expanded_states: "%s"\n' % ' '.join(expanded_states)) + + # reverse and write backwards solution + search.REVERSE_PUSH = not search.REVERSE_PUSH + solution, expanded_states, error = self.getSolInfo(search) + if error != None: raise Exception("Error in solution code: %s" % error) + handle.write('rev_solution: "%s"\n' % ' '.join(solution)) + handle.write('rev_expanded_states: "%s"\n' % ' '.join(expanded_states)) + + # clean up + search.REVERSE_PUSH = not search.REVERSE_PUSH + handle.close() + return True + + + +class PacmanSearchTest(testClasses.TestCase): + + def __init__(self, question, testDict): + super(PacmanSearchTest, self).__init__(question, testDict) + self.layout_text = testDict['layout'] + self.alg = testDict['algorithm'] + self.layoutName = testDict['layoutName'] + + # TODO: sensible to have defaults like this? + self.leewayFactor = float(testDict.get('leewayFactor', '1')) + self.costFn = eval(testDict.get('costFn', 'None')) + self.searchProblemClassName = testDict.get('searchProblemClass', 'PositionSearchProblem') + self.heuristicName = testDict.get('heuristic', None) + + + def getSolInfo(self, search, searchAgents): + alg = getattr(search, self.alg) + lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')]) + start_state = pacman.GameState() + start_state.initialize(lay, 0) + + problemClass = getattr(searchAgents, self.searchProblemClassName) + problemOptions = {} + if self.costFn != None: + problemOptions['costFn'] = self.costFn + problem = problemClass(start_state, **problemOptions) + heuristic = getattr(searchAgents, self.heuristicName) if self.heuristicName != None else None + + if heuristic != None: + solution = alg(problem, heuristic) + else: + solution = alg(problem) + + if type(solution) != type([]): + return None, None, 'The result of %s must be a list. (Instead, it is %s)' % (self.alg, type(solution)) + + from game import Directions + dirs = Directions.LEFT.keys() + if [el in dirs for el in solution].count(False) != 0: + return None, None, 'Output of %s must be a list of actions from game.Directions' % self.alg + + expanded = problem._expanded + return solution, expanded, None + + def execute(self, grades, moduleDict, solutionDict): + search = moduleDict['search'] + searchAgents = moduleDict['searchAgents'] + gold_solution = [str.split(solutionDict['solution']), str.split(solutionDict['rev_solution'])] + gold_expanded = max(int(solutionDict['expanded_nodes']), int(solutionDict['rev_expanded_nodes'])) + + solution, expanded, error = self.getSolInfo(search, searchAgents) + if error != None: + grades.addMessage('FAIL: %s' % self.path) + grades.addMessage('%s' % error) + return False + + # FIXME: do we want to standardize test output format? + + if solution not in gold_solution: + grades.addMessage('FAIL: %s' % self.path) + grades.addMessage('Solution not correct.') + grades.addMessage('\tstudent solution length: %s' % len(solution)) + grades.addMessage('\tstudent solution:\n%s' % wrap_solution(solution)) + grades.addMessage('') + grades.addMessage('\tcorrect solution length: %s' % len(gold_solution[0])) + grades.addMessage('\tcorrect (reversed) solution length: %s' % len(gold_solution[1])) + grades.addMessage('\tcorrect solution:\n%s' % wrap_solution(gold_solution[0])) + grades.addMessage('\tcorrect (reversed) solution:\n%s' % wrap_solution(gold_solution[1])) + return False + + if expanded > self.leewayFactor * gold_expanded and expanded > gold_expanded + 1: + grades.addMessage('FAIL: %s' % self.path) + grades.addMessage('Too many node expanded; are you expanding nodes twice?') + grades.addMessage('\tstudent nodes expanded: %s' % expanded) + grades.addMessage('') + grades.addMessage('\tcorrect nodes expanded: %s (leewayFactor %s)' % (gold_expanded, self.leewayFactor)) + return False + + grades.addMessage('PASS: %s' % self.path) + grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName) + grades.addMessage('\tsolution length: %s' % len(solution)) + grades.addMessage('\tnodes expanded:\t\t%s' % expanded) + return True + + + def writeSolution(self, moduleDict, filePath): + search = moduleDict['search'] + searchAgents = moduleDict['searchAgents'] + # open file and write comments + handle = open(filePath, 'w') + handle.write('# This is the solution file for %s.\n' % self.path) + handle.write('# This solution is designed to support both right-to-left\n') + handle.write('# and left-to-right implementations.\n') + handle.write('# Number of nodes expanded must be with a factor of %s of the numbers below.\n' % self.leewayFactor) + + # write forward solution + solution, expanded, error = self.getSolInfo(search, searchAgents) + if error != None: raise Exception("Error in solution code: %s" % error) + handle.write('solution: """\n%s\n"""\n' % wrap_solution(solution)) + handle.write('expanded_nodes: "%s"\n' % expanded) + + # write backward solution + search.REVERSE_PUSH = not search.REVERSE_PUSH + solution, expanded, error = self.getSolInfo(search, searchAgents) + if error != None: raise Exception("Error in solution code: %s" % error) + handle.write('rev_solution: """\n%s\n"""\n' % wrap_solution(solution)) + handle.write('rev_expanded_nodes: "%s"\n' % expanded) + + # clean up + search.REVERSE_PUSH = not search.REVERSE_PUSH + handle.close() + return True + + +from game import Actions +def getStatesFromPath(start, path): + "Returns the list of states visited along the path" + vis = [start] + curr = start + for a in path: + x,y = curr + dx, dy = Actions.directionToVector(a) + curr = (int(x + dx), int(y + dy)) + vis.append(curr) + return vis + +class CornerProblemTest(testClasses.TestCase): + + def __init__(self, question, testDict): + super(CornerProblemTest, self).__init__(question, testDict) + self.layoutText = testDict['layout'] + self.layoutName = testDict['layoutName'] + + def solution(self, search, searchAgents): + lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')]) + gameState = pacman.GameState() + gameState.initialize(lay, 0) + problem = searchAgents.CornersProblem(gameState) + path = search.bfs(problem) + + gameState = pacman.GameState() + gameState.initialize(lay, 0) + visited = getStatesFromPath(gameState.getPacmanPosition(), path) + top, right = gameState.getWalls().height-2, gameState.getWalls().width-2 + missedCorners = [p for p in ((1,1), (1,top), (right, 1), (right, top)) if p not in visited] + + return path, missedCorners + + def execute(self, grades, moduleDict, solutionDict): + search = moduleDict['search'] + searchAgents = moduleDict['searchAgents'] + gold_length = int(solutionDict['solution_length']) + solution, missedCorners = self.solution(search, searchAgents) + + if type(solution) != type([]): + grades.addMessage('FAIL: %s' % self.path) + grades.addMessage('The result must be a list. (Instead, it is %s)' % type(solution)) + return False + + if len(missedCorners) != 0: + grades.addMessage('FAIL: %s' % self.path) + grades.addMessage('Corners missed: %s' % missedCorners) + return False + + if len(solution) != gold_length: + grades.addMessage('FAIL: %s' % self.path) + grades.addMessage('Optimal solution not found.') + grades.addMessage('\tstudent solution length:\n%s' % len(solution)) + grades.addMessage('') + grades.addMessage('\tcorrect solution length:\n%s' % gold_length) + return False + + grades.addMessage('PASS: %s' % self.path) + grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName) + grades.addMessage('\tsolution length:\t\t%s' % len(solution)) + return True + + def writeSolution(self, moduleDict, filePath): + search = moduleDict['search'] + searchAgents = moduleDict['searchAgents'] + # open file and write comments + handle = open(filePath, 'w') + handle.write('# This is the solution file for %s.\n' % self.path) + + print "Solving problem", self.layoutName + print self.layoutText + + path, _ = self.solution(search, searchAgents) + length = len(path) + print "Problem solved" + + handle.write('solution_length: "%s"\n' % length) + handle.close() + + + + +# template = """class: "HeuristicTest" +# +# heuristic: "foodHeuristic" +# searchProblemClass: "FoodSearchProblem" +# layoutName: "Test %s" +# layout: \"\"\" +# %s +# \"\"\" +# """ +# +# for i, (_, _, l) in enumerate(doneTests + foodTests): +# f = open("food_heuristic_%s.test" % (i+1), "w") +# f.write(template % (i+1, "\n".join(l))) +# f.close() + +class HeuristicTest(testClasses.TestCase): + + def __init__(self, question, testDict): + super(HeuristicTest, self).__init__(question, testDict) + self.layoutText = testDict['layout'] + self.layoutName = testDict['layoutName'] + self.searchProblemClassName = testDict['searchProblemClass'] + self.heuristicName = testDict['heuristic'] + + def setupProblem(self, searchAgents): + lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')]) + gameState = pacman.GameState() + gameState.initialize(lay, 0) + problemClass = getattr(searchAgents, self.searchProblemClassName) + problem = problemClass(gameState) + state = problem.getStartState() + heuristic = getattr(searchAgents, self.heuristicName) + + return problem, state, heuristic + + def checkHeuristic(self, heuristic, problem, state, solutionCost): + h0 = heuristic(state, problem) + + if solutionCost == 0: + if h0 == 0: + return True, '' + else: + return False, 'Heuristic failed H(goal) == 0 test' + + if h0 < 0: + return False, 'Heuristic failed H >= 0 test' + if not h0 > 0: + return False, 'Heuristic failed non-triviality test' + if not h0 <= solutionCost: + return False, 'Heuristic failed admissibility test' + + for succ, action, stepCost in problem.getSuccessors(state): + h1 = heuristic(succ, problem) + if h1 < 0: return False, 'Heuristic failed H >= 0 test' + if h0 - h1 > stepCost: return False, 'Heuristic failed consistency test' + + return True, '' + + def execute(self, grades, moduleDict, solutionDict): + search = moduleDict['search'] + searchAgents = moduleDict['searchAgents'] + solutionCost = int(solutionDict['solution_cost']) + problem, state, heuristic = self.setupProblem(searchAgents) + + passed, message = self.checkHeuristic(heuristic, problem, state, solutionCost) + + if not passed: + grades.addMessage('FAIL: %s' % self.path) + grades.addMessage('%s' % message) + return False + else: + grades.addMessage('PASS: %s' % self.path) + return True + + def writeSolution(self, moduleDict, filePath): + search = moduleDict['search'] + searchAgents = moduleDict['searchAgents'] + # open file and write comments + handle = open(filePath, 'w') + handle.write('# This is the solution file for %s.\n' % self.path) + + print "Solving problem", self.layoutName, self.heuristicName + print self.layoutText + problem, _, heuristic = self.setupProblem(searchAgents) + path = search.astar(problem, heuristic) + cost = problem.getCostOfActions(path) + print "Problem solved" + + handle.write('solution_cost: "%s"\n' % cost) + handle.close() + return True + + + + + + +class HeuristicGrade(testClasses.TestCase): + + def __init__(self, question, testDict): + super(HeuristicGrade, self).__init__(question, testDict) + self.layoutText = testDict['layout'] + self.layoutName = testDict['layoutName'] + self.searchProblemClassName = testDict['searchProblemClass'] + self.heuristicName = testDict['heuristic'] + self.basePoints = int(testDict['basePoints']) + self.thresholds = [int(t) for t in testDict['gradingThresholds'].split()] + + def setupProblem(self, searchAgents): + lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')]) + gameState = pacman.GameState() + gameState.initialize(lay, 0) + problemClass = getattr(searchAgents, self.searchProblemClassName) + problem = problemClass(gameState) + state = problem.getStartState() + heuristic = getattr(searchAgents, self.heuristicName) + + return problem, state, heuristic + + + def execute(self, grades, moduleDict, solutionDict): + search = moduleDict['search'] + searchAgents = moduleDict['searchAgents'] + problem, _, heuristic = self.setupProblem(searchAgents) + + path = search.astar(problem, heuristic) + + expanded = problem._expanded + + if not checkSolution(problem, path): + grades.addMessage('FAIL: %s' % self.path) + grades.addMessage('\tReturned path is not a solution.') + grades.addMessage('\tpath returned by astar: %s' % expanded) + return False + + grades.addPoints(self.basePoints) + points = 0 + for threshold in self.thresholds: + if expanded <= threshold: + points += 1 + grades.addPoints(points) + if points >= len(self.thresholds): + grades.addMessage('PASS: %s' % self.path) + else: + grades.addMessage('FAIL: %s' % self.path) + grades.addMessage('\texpanded nodes: %s' % expanded) + grades.addMessage('\tthresholds: %s' % self.thresholds) + + return True + + + def writeSolution(self, moduleDict, filePath): + handle = open(filePath, 'w') + handle.write('# This is the solution file for %s.\n' % self.path) + handle.write('# File intentionally blank.\n') + handle.close() + return True + + + + + +# template = """class: "ClosestDotTest" +# +# layoutName: "Test %s" +# layout: \"\"\" +# %s +# \"\"\" +# """ +# +# for i, (_, _, l) in enumerate(foodTests): +# f = open("closest_dot_%s.test" % (i+1), "w") +# f.write(template % (i+1, "\n".join(l))) +# f.close() + +class ClosestDotTest(testClasses.TestCase): + + def __init__(self, question, testDict): + super(ClosestDotTest, self).__init__(question, testDict) + self.layoutText = testDict['layout'] + self.layoutName = testDict['layoutName'] + + def solution(self, searchAgents): + lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')]) + gameState = pacman.GameState() + gameState.initialize(lay, 0) + path = searchAgents.ClosestDotSearchAgent().findPathToClosestDot(gameState) + return path + + def execute(self, grades, moduleDict, solutionDict): + search = moduleDict['search'] + searchAgents = moduleDict['searchAgents'] + gold_length = int(solutionDict['solution_length']) + solution = self.solution(searchAgents) + + if type(solution) != type([]): + grades.addMessage('FAIL: %s' % self.path) + grades.addMessage('\tThe result must be a list. (Instead, it is %s)' % type(solution)) + return False + + if len(solution) != gold_length: + grades.addMessage('FAIL: %s' % self.path) + grades.addMessage('Closest dot not found.') + grades.addMessage('\tstudent solution length:\n%s' % len(solution)) + grades.addMessage('') + grades.addMessage('\tcorrect solution length:\n%s' % gold_length) + return False + + grades.addMessage('PASS: %s' % self.path) + grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName) + grades.addMessage('\tsolution length:\t\t%s' % len(solution)) + return True + + def writeSolution(self, moduleDict, filePath): + search = moduleDict['search'] + searchAgents = moduleDict['searchAgents'] + # open file and write comments + handle = open(filePath, 'w') + handle.write('# This is the solution file for %s.\n' % self.path) + + print "Solving problem", self.layoutName + print self.layoutText + + length = len(self.solution(searchAgents)) + print "Problem solved" + + handle.write('solution_length: "%s"\n' % length) + handle.close() + return True + + + + +class CornerHeuristicSanity(testClasses.TestCase): + + def __init__(self, question, testDict): + super(CornerHeuristicSanity, self).__init__(question, testDict) + self.layout_text = testDict['layout'] + + def execute(self, grades, moduleDict, solutionDict): + search = moduleDict['search'] + searchAgents = moduleDict['searchAgents'] + game_state = pacman.GameState() + lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')]) + game_state.initialize(lay, 0) + problem = searchAgents.CornersProblem(game_state) + start_state = problem.getStartState() + h0 = searchAgents.cornersHeuristic(start_state, problem) + succs = problem.getSuccessors(start_state) + # cornerConsistencyA + for succ in succs: + h1 = searchAgents.cornersHeuristic(succ[0], problem) + if h0 - h1 > 1: + grades.addMessage('FAIL: inconsistent heuristic') + return False + heuristic_cost = searchAgents.cornersHeuristic(start_state, problem) + true_cost = float(solutionDict['cost']) + # cornerNontrivial + if heuristic_cost == 0: + grades.addMessage('FAIL: must use non-trivial heuristic') + return False + # cornerAdmissible + if heuristic_cost > true_cost: + grades.addMessage('FAIL: Inadmissible heuristic') + return False + path = solutionDict['path'].split() + states = followPath(path, problem) + heuristics = [] + for state in states: + heuristics.append(searchAgents.cornersHeuristic(state, problem)) + for i in range(0, len(heuristics) - 1): + h0 = heuristics[i] + h1 = heuristics[i+1] + # cornerConsistencyB + if h0 - h1 > 1: + grades.addMessage('FAIL: inconsistent heuristic') + return False + # cornerPosH + if h0 < 0 or h1 <0: + grades.addMessage('FAIL: non-positive heuristic') + return False + # cornerGoalH + if heuristics[len(heuristics) - 1] != 0: + grades.addMessage('FAIL: heuristic non-zero at goal') + return False + grades.addMessage('PASS: heuristic value less than true cost at start state') + return True + + def writeSolution(self, moduleDict, filePath): + search = moduleDict['search'] + searchAgents = moduleDict['searchAgents'] + # write comment + handle = open(filePath, 'w') + handle.write('# In order for a heuristic to be admissible, the value\n') + handle.write('# of the heuristic must be less at each state than the\n') + handle.write('# true cost of the optimal path from that state to a goal.\n') + + # solve problem and write solution + lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')]) + start_state = pacman.GameState() + start_state.initialize(lay, 0) + problem = searchAgents.CornersProblem(start_state) + solution = search.astar(problem, searchAgents.cornersHeuristic) + handle.write('cost: "%d"\n' % len(solution)) + handle.write('path: """\n%s\n"""\n' % wrap_solution(solution)) + handle.close() + return True + + + +class CornerHeuristicPacman(testClasses.TestCase): + + def __init__(self, question, testDict): + super(CornerHeuristicPacman, self).__init__(question, testDict) + self.layout_text = testDict['layout'] + + def execute(self, grades, moduleDict, solutionDict): + search = moduleDict['search'] + searchAgents = moduleDict['searchAgents'] + total = 0 + true_cost = float(solutionDict['cost']) + thresholds = map(int, solutionDict['thresholds'].split()) + game_state = pacman.GameState() + lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')]) + game_state.initialize(lay, 0) + problem = searchAgents.CornersProblem(game_state) + start_state = problem.getStartState() + if searchAgents.cornersHeuristic(start_state, problem) > true_cost: + grades.addMessage('FAIL: Inadmissible heuristic') + return False + path = search.astar(problem, searchAgents.cornersHeuristic) + print "path:", path + print "path length:", len(path) + cost = problem.getCostOfActions(path) + if cost > true_cost: + grades.addMessage('FAIL: Inconsistent heuristic') + return False + expanded = problem._expanded + points = 0 + for threshold in thresholds: + if expanded <= threshold: + points += 1 + grades.addPoints(points) + if points >= len(thresholds): + grades.addMessage('PASS: Heuristic resulted in expansion of %d nodes' % expanded) + else: + grades.addMessage('FAIL: Heuristic resulted in expansion of %d nodes' % expanded) + return True + + def writeSolution(self, moduleDict, filePath): + search = moduleDict['search'] + searchAgents = moduleDict['searchAgents'] + # write comment + handle = open(filePath, 'w') + handle.write('# This solution file specifies the length of the optimal path\n') + handle.write('# as well as the thresholds on number of nodes expanded to be\n') + handle.write('# used in scoring.\n') + + # solve problem and write solution + lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')]) + start_state = pacman.GameState() + start_state.initialize(lay, 0) + problem = searchAgents.CornersProblem(start_state) + solution = search.astar(problem, searchAgents.cornersHeuristic) + handle.write('cost: "%d"\n' % len(solution)) + handle.write('path: """\n%s\n"""\n' % wrap_solution(solution)) + handle.write('thresholds: "2000 1600 1200"\n') + handle.close() + return True + diff --git a/search/submission_autograder.py b/search/submission_autograder.py new file mode 100644 index 0000000..a521913 --- /dev/null +++ b/search/submission_autograder.py @@ -0,0 +1,41 @@ +# submission_autograder.py +# ------------------------ +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +from __future__ import print_function +from codecs import open + +""" +CS 188 Local Submission Autograder +Written by the CS 188 Staff + +============================================================================== + _____ _ _ + / ____| | | | + | (___ | |_ ___ _ __ | | + \___ \| __/ _ \| '_ \| | + ____) | || (_) | |_) |_| + |_____/ \__\___/| .__/(_) + | | + |_| + +Modifying or tampering with this file is a violation of course policy. +If you're having trouble running the autograder, please contact the staff. +============================================================================== +""" +import bz2, base64 +exec(bz2.decompress(base64.b64decode('QlpoOTFBWSZTWc9TWUgAOk1fgHAQfv///3////7////6YBzcOfaRd5kYNx69uwK9tTYSVnbNW8BesDoYHp6AHocjo0PR0oZSvTJUFbVqqg63TRKD2u44O2bAA94SSE0CGTJo0mRknpT2hlR5CNPKep5QHqHqaPKAaADTQTQETUymmTKQ/VM1MTYUPUyHqeg1B6gAAABpiIiIjJ6g9TTTJoaABoNAAAAA000AJNFIkEhigzUj0j1HqeoeoAAAAeoAAAPUONDQNGmRpo0yAxMEAANAaA0yAwJkCRIQAIAIAmmkxMj1Mk2gNR6SNHqaAMm1GPZ0B9w+cDIfSljGfYwop/0l1lT7GFQVn8tsnvof+aVRUQRBSI/2WooexlIxYIih2lj39u15YsyHGV+dknqkmQ6/5oZm+N2E8WypVgwGKKJ/ZGFIXMURYgknWJZhM1zVpcCjog70kjcIH6327U6abJ2bfd7u3mo59wvu6mX7Yu+l93bJnH5XEx10N4bKGDF03QJVMk1R/T9V0fLlw1vB4uLukDxp2SAPQAhVgLFBFVgKIkVFBWIKpNgxjYhsbG1b7c/pX0rZhiNXec/nB0S4cuuXZZCPKwktHyX+b7v0mfHHHTQ3tFTDRhJttjbfCAo8rtDGw4GIUpKNbYus5vi16LdFLNEGynTnlsilPZqvOTadXbibDVrwu0yceZhlVVWRVkO+RV19ATRYTqJyCFVWQ2whRUoF9uss1/zj3OPNzqKlTGoe7BzXug33v0Bju24nEmR0xlu0ufVbXTPUN/bDr8F5yWxqYTcoQSiAlWceG7V3AqlQJ1e1KCiXXRcA22eTcYV20aXXotiCSQQaeZRgam/HhhzuulVnMnpnhncyBtttNMxpZuYxbLL+1zZ/NazB3bNV+ZHvwldaRXXx3QV1NEFDzGrXP9bjG3bUkNpNon2VvNhL7Acq0cTSyCChQEohIBBDdYNZxflh+3CsHduIC6VaKlu6MDY4oeJ+nxYFJO5C0Ww4TV672eZq3RY4vwZKRftNd1Y29SduvtgXHOmc+wdXtHlH1oucM7cPTl3XveZeUcdmeTkON1T93Zx2BRmyPLf8YLm9h7piEIPV93x/BgseElmWFRdEJEn0avn2ycOjbPSUUTtj6mzcM0lNoOMuKh6S35Md1b9N3Flsk/qcw9Lm6Ol7VuIMwyYzuozm6vQ2b6CMvXwLtutOE5m0pnb8zBM2ZVLhjK2zieaclhy1U1uzMtURj1d0CSSL3SzT5iQuMJt5XGODhDQHQMwiGxKJwm9jgCO/HV/D6fml5/6+/UKzVGGeOkNoR+ROayL9tSnH33qkxk6Q4N673GCziPVtLt94x2PEDuw+r8b2/EDr5M/WZ8qzLEqikG2FZ59ufXvePHj6ue3nne+Z4aid/PMw1gx054wIjEixxaVG9YLnRqk1kiSIsCsoSvpuOaNvPwevfZ0ng77HSc5AYJS7e648IRgZmyYstMS9oMLAUPKqVBFldVFEYFKBZDxYoTJTE3wqixtZ3w72sMMzBEzmyDBkXK0J4TAgYbIxti95PVzJ3BeDub8zVknZQliU5xPCARcBb0kNcHMBXzR0kKl02mc557Dn92d17M9e/pj6p7Bsbvx9MiSnqVjTEW6rjv+pTEC7jq3hKEYMGJcB8XUGjklVVj3qicn8rZb85sai7HSqwGs9TD11AxguyJUltWeGdLbmMOMj2uw+4quR5GVApHowi2VFRT2HmoczEMlcds/Fv5ud28+Ovu26c80Dmo8fZ4nEzC8P48m1jsM7Th86kX39xp24FNAMyib9fLcfX6oGliWgYY6GOuMvurCwqX5kimw49c9TxZiw9Aw7Te4wMO2zM/gRBHHk2z2xYgAsp7JZ66aqdFewpHvEWoT3D8UOe22SDA02ztD0PHtUyXI3MmrOR46p0X11ygdrmwo5On0frZ+Vuoqr7GJaNQx4kPZlJSaiuKc+6j37lphVI4KKRcNPaxUJ8D2EEwdD3VqUt3tjcYJel31RYNtUWDw9+PfMLXgysljILlaFw2dt3m8HDz2Jw+E6LTuxOVjerwd4CjEBZXQmmVem0BWdRW0Zw71Gh1aHWdd+J0CsbYh/jDR8gHycInvjoiezrziyjjykAs7uOLjvk3pZ0tm6VsEKxvWBaSdWKGNkEZ2Fdzwa6vGE2EDOorrV0ILsDRjfilKqs6VV+6JWICr4VpSAlGx0vBlcqr5TuorOdKkUmbQIq9qLorirHzTR4ZUlWwuQxjUF3GuRd99UZDUE8mipck1hqcwPtHZfFJRUZqY3mmgMFbhl6HtED2wHQpMDoDkGKzJkwmK50Za68GErqsdTT6e+sb5BHAFmbtJplBLFNps3WVJTwlB8qWCEFjphDdZZOazUdfY70dDOA0dDCdJs10CA9wOBkzxrEQPdtC6UxucfYM9E6fC77l94HSV14uKshtzXZ7xVEqDTbfzjRoGlrtjsR6YerWBd402g1ot+GupYjsxpRwEZI1UaL4v8a+cqdV+a2W8sXdklESfCLr3u3mlxPAqLp3Q2Me2vu4W5tUOJEkVIdudqWOcZF9m1MwrMgM9OV8THvjVrik32rNtnnJ4OKUFm0QAsImOQPKpeiv5vjT0nVMZSBm0qYrqmmJSh8+dulNMA1KRwfUeiruBaXfIBFkDPUrIfl5/V/r/zbaBhkhtQBgxLwYRhQa97Hmp6r0PX6YehRK+fbODKXVbPFwbWPjxaBF3IPpxFL2+jw5amuDVQzYtdnVmSaI6qgIOgwoWNV9GGNlhbbYjJiotduTD904Z1la0sBiZKqktTEUDao9S0de+WpK7I6qDQbB3FCMkUoqQlA+wWCxiNDBUjQIqdptySGU7oyhnyMYCyzeM77s8ba2Nj1b30EJAjHl26/u+Xo78j691b04hGBBChzG5QQ2DhPhBTTPF5dZlu2zquKJYYKLkOHLbR4aVhsWk03MtTZTPEeN42nucj14ppGHbbShUZandKqdS1dSyjJmk2VoJkaDyFtGW8VzaFWobNhUBogMJTLSTGWhyWnKpqyq3OKbQRbJsolDUaQbyyqlQoMKirHSQHDYESQ04F/7p9F59X3RrEJAj9uMir4wfEQkCPNAeP7dXu/H9LfhEJAjw9dANe7wEJAjlvwwt+IQkCOvyEJAia/kISBGqv/7bsqu8tIbTYxnxgiICxBgjJ9n9Nh/owXJw/n7rsFv69zuT+p4zlaR4Tw1m4Uyq5KlUbaPdh4Zr0a3rnF5i8LYiSvMHkhlm4o3NRr3TKcOFLgw6aXRMsK92WVDnIckyqTG6xW2XD2rhBZy0rOnidHXV5jo3R4c6XiunHJ09DO0OMwTsp6VELECnQKusQNlVfglEGCC+2cpkjEHqunn57evW3i3WwiiqqrCiVVW0a2qeK6HbeNc9vgeW16e5Ho68BuCnaWlvVCopvQ5uca1oNGxWq+Th8lb+SnW410HOVw583x10HRc3nCNJw4jiISBHm/b+/Z9gIBK09P3yEhC2ef9RCQIqM7P6ezop9J7tv6iEgRfV/sISBE++v5c7x+0QkCMMpOO8QkCIh5x93LL9lBCQIqpuZKVfTAjb7O6lwhIEV512MNn7xCQIj4/eISBH0CEgRKj/sISBHyEJAjV8BCQIypv60eLbeDCPkz5T6oPB5Kh8CKj8Rz5TI9Gt5kWCzbG0gb1v7fPEUVR7vQ7FOAQLVUIZG6tQ1Byn5faBzt5U1lddA/JDqXV8yOq1fufKOsBjdVuJPg/w7b5MuI3krPkQW0LcCXlalnUjIvkSttg17f+BxA8Z7UcdsgPmyrZddiEJAj7ZPOanLjRKHmGdyNdXgZ0xtQXRkwJjYxQRcvzxFmjeDki5OY/cty5korR5MqpMnkBcik4pf+v6BIzJ2JbZgE7NRuJCAiCHVnZ1sCeg6TnOFVHnqBhcis8LLxhxT6SL8rmFi4hKHUsEDZ8GW9QPNhukAXFL0DKsUxjqrlhf72bzbEZW60rzwyNYaE0uRiX12+Ps/8tQFi32q0zke01GNAhq5XK/tjlfABvArPK0850CEgRPMLo0s5yJfYISBDKFrJm0iYV5nFjUhKGoDKoPBHS4qKlYGEwMf4SlwQGO1086VtquDNhu1HE+y57M7oU3xzQSYD7MAhpa1h+c9K2jddOaqULYEsFdpok41OcF7Lm5kQt8SBZLjK9Ncdix1TjrwQlKjQKGsKJS/ojbtAFGrQ4FKLYhoaYSIrQ6d3m4Lkt+9afL6+lE6G9AXiOpDc3HgJKYxMYxmQHI1CdBB27LJzuyGGlO7G+tg2HOpCyRS03VhyoZuxdVcwDpZ5aljnjW66CEgR0VazG6M+pT6/0jfOBzG4fotjSXqfZUqYzN3AWo6ahbPZ7rpqaKqn2ckLcKlAifEVeQqkBKsRDRKpmE7gKLZxYVDuZFab38KWAg5ZUsGkTFyYNUo2TudmEZRSZMsrwliY+4QkCLCbJFZCVa1g1nMCaUhe3wSzptsgMkp/2JW2okl21bZxR1vCSvkFOWYHFB0d/pEXiSOixGvu5j0XyGTQsJHenhQBqxcWvgyXhUhweOpOz8DMWFc8pD105VouPDM1llM0G7+lLNu8d9UhyUSalYlKUpqChEEYo0rUwqRG7G6wW0B0Ltj7MIR1FJOQhg3FCNVB7iqsyYfDoqu1W3fmSJ94i9eJoZckRyccVfhmfIHir8AyRAFQkoAJndElEuHvAQXYAvP3E+6oAK61BfvFnwGMp1JuhHPzANDENjQwE0MZz3WySl+TPn7O821+ycT/KK2h/H1CEgRl5iiePIrD5haBNE+87bDHsW2S8aiFBgVJapk+Mo9ZJE07KyCSR6RjTBseAb8h0Qep3PxfWmnc8Hz33ZYGQKvint6tQFin2iEgQ9jAGDtgPeh1SwS5suFMuH3C+iK9ZXICVYptG4Z7NdxsPQ0mtZCRCY/0EJAhyuzoEP2sCAoRBGWx8/SVKtlVqYIgh+jlRcWiJIleRD2OhwWDJizWiV8NYZQR0XbeePsvSLsxGXBfmISBGPDQO83pENv3NLS8NUFDO36KbU6wL0qu5NngfbatzQNiCaaXtaVQIMwCoErwWkzqaiaDVo/l1KNntPeVy1nOF1NmUZkTZwlxciWA6hjTIHTXdt2Y4+NgJYFiK4yGhtNsQMbGmh+oCh/GDGtGaQc32G7q6RX6ed96rsLkbQ/ZrkSBgPGA1F6VuzvS40pfbOw3aOWvCqwJHYg/EQkCMgWeb50z77j9iPWyGVDQmL3qk8vLhheuiva7FtAKlnsP4QRA5hxpBEgWUsEQgHn6Anv/DDHoHmMHllynzi4MMxaJvQkZpjEQQQhjSGMBGSB7dwqUovDkiIBilkRkhilBEkDqdLw4cgIhOUsBBkMBBAgY0CMcoSAIsR6tKmVtWThdQSG09dOPT10OQ4zl3Nqc1kpUrNxO5c8O4KtYu7clSXBUB32G7A0C7QrRNCkRajZKHLPGd08BLlsusawsZGLFqlBhhKKwYSrNbaFFLDFInPHkyRlciA3l42GxiDFpH+HrzReTVW2JtFuwwmTfQWFmKmus6rer1Y1HPIWzebm5HBDGkp6mBugpPv6/AtPueXg8vm1toOlttqNYQKpVzmtRgVVl9jNIbhawQQQ2EhXw0eGOrcQdGpGdIlxMqjYYl4DyGOIhuFlDZKQsFntsLwoVgisZThSXowfIDkD1JqGSYDoKvUlQmTA+iRUSQtlQG1EI42h2F+cim2ZLa4UjbRESAn6RCQI6MDuZs4WQezukkcaLHKMAJ61DlEF0KG0gaTAZG1jTGGmqL99VnIvL9mBLqXlFQZI6UsAGK3O5B1WHvsCbwEEVSTZl9eGx8C9fUa/ZfcM3wcAkgnx0URRREQVRGMiWluHcO3tlR0I0IrJQz8EENM4667Ed997jvic3EMnCigGkKmoLoGXTipmsJFoHDOY0ZQQISCQrb2mxXphpwzTy8FYDAGQ7lkCyr+LRmzBV7pu4c0SVIUiZyKDLbFpUGRCdVpRsTOKlkRpTKlkyJhKKSIabQ2QIxyrgCkBZYJhiZ7OzG63Sbc4vwPl9IesnYFYekPXOKMDhYGgFJRnXMlqGTaBFEB11kmV456zMhKpylDRAJsBg+kHI099MgtaFGZIssjPrJOQ0TISIRMIBYcwLL+XJ8RoNw1tXhhm2PxnxXYW11BRZpQ2jAqOUbMFQbYwzIVFGbcEpAVTiYySSIJqFQ2usbAaQmJGbAsaGkQ1G1oU0mnQ84Ue77frllO4QkCMEuHf6yR7JhC2BQY5dpv6+Bxs/3bYs0iw+YEfAFCDwrti6vYz+tK+rSOC3wpamBo0jlSkaMBsSJShI+pKgcrJHJeVdarBSZmF0cnVmyXyUdMGQKcnteEQmQ00Q3bRRCpkiYQSIu35B15VWJHJk/YtZq0LP0pOYG9er014VXhuR9tg5+b+h9P1v5fzk/HQfPx6ZzrS0uMbJUuEt1QJBd52WG0aJgEwHTIOoJdW6NrmicbK8rXpooaPHjiLNY3XKYCk2taMoLFF0tsqlBFZtKHn9PfXPE931/RP5H03pVXbhof4dnPboP59DU3gawGMIJAmNohpvvGwKRZT3Q+j6OjzSHg8BQYrBntx5ODzq2Sl6CrWi20KoluoJqKIUUAssIbLURkEEKaUh7/AIsvwe/ASXk2MNPWlFmdeBmsocHICIbk1miQEChBJSGsUagLV8OemN5rEle+E9VR7RCQQxuiF9e/IvswQqPubbV9yU9GebuzhIISYjbXbKphRqIX9hCQIuQeSS/azDFAX9wBO25YPIZIHYg6Mp1FItiC5GHgLMVOrA5pWImdofPcsVTGEku53ccqtQML/PSU5lEyoEoPWaqkUHemAMANVliAt7PWqXvVfvswvD8YDQJAQFjyAMm07/n+ywmUbdQipEZ+c8ZefKdPWLauHYBiB+CYzb4a1GqIqFBzrGAR8MV2LiTaI99BTyKi+lmWuKdPGvb299tlT3yfV3I6yqTwOrtRMi+ziqs65rs6OdsRyXQKXxOGdEuACNaIXJqtEAIh4TOWhNVFUYFLGcWnkMQxFQDiIDRQQQSkEIKFVeWmSsuCQtyVm3tfS54huIsGMYpBCqDYM9ONviOdlEWhhbPuQGa4BUSmfG3PwnheCsvgY0A2r+PqS036L6QWTFA+/8CI/M22MrZQhg+EiQRAmA5CA4xIIgc4jjEiRA5PmE4jW2sOB8DSUE0pHx+yNPI6UrCj5/gUvDinoTyiDGAcKUD5D5iUMCLOw6EiumAiJPvewFIwngsAQ+6W/dtST5RttZoyOu17DbxxTyIQ8WzkqT9BWtUqr2FT0QNsRe5hjLLlnwLdTCAbibirqqkRKK9KsXDDc7XW15pb424h6+lL1VO2WIQp0dPAON4TBZGpu+8E4JOBv2CEgQ3cieifqFJ+HVwAKyB6zHG+z3mwKsA0M7aBUhUQ02UJ9iw6qXo+9pEPLrYPuzxClt4BJhYkwL2MmkuTXcVVXoyUT1UPT0Wbuo27g3NMaCpBrmatuw5zm6GkiUZRIG5xPEVEh2smiQNFoiB1cztOKJJXuxD24mTbMWgwSkRsiY+YjSxOQATxMTBbi1WcbqBzmkp5alxzJQpn4CIz/iS8AdUsV0X9CGL1u91nOpD6GfxtNQhIEc+5SpKUldcbKW1yADoCsD2JVdLq7Y3j1+jfbyGX2lXJHVh0Gcfi02iAtL1q5W6rutGolLLswfWm9tfe8ryj+oQkCJ5Uw8ScsRhNfP0CEgRlVVwP5JWI6elKouvISoLO0JbC9LA+O3gISBE7BeTSYdXeeaOFclJOUKuk5Aq2gqCFSU0SaIZ0tc3KR81K6zyEJAhhUaB28ETL/dVDNPxMT/sQkCIUkbi9pPioSqKx0SHewXhK3tZxw7HfgOZfT3cs1EnX5U+S8vPzd+7cL9XvE3kMMXD/4u5IpwoSGeprKQA=='))) + diff --git a/search/testClasses.py b/search/testClasses.py new file mode 100644 index 0000000..6f95533 --- /dev/null +++ b/search/testClasses.py @@ -0,0 +1,206 @@ +# testClasses.py +# -------------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +# import modules from python standard library +import inspect +import re +import sys + + +# Class which models a question in a project. Note that questions have a +# maximum number of points they are worth, and are composed of a series of +# test cases +class Question(object): + + def raiseNotDefined(self): + print 'Method not implemented: %s' % inspect.stack()[1][3] + sys.exit(1) + + def __init__(self, questionDict, display): + self.maxPoints = int(questionDict['max_points']) + self.testCases = [] + self.display = display + + def getDisplay(self): + return self.display + + def getMaxPoints(self): + return self.maxPoints + + # Note that 'thunk' must be a function which accepts a single argument, + # namely a 'grading' object + def addTestCase(self, testCase, thunk): + self.testCases.append((testCase, thunk)) + + def execute(self, grades): + self.raiseNotDefined() + +# Question in which all test cases must be passed in order to receive credit +class PassAllTestsQuestion(Question): + + def execute(self, grades): + # TODO: is this the right way to use grades? The autograder doesn't seem to use it. + testsFailed = False + grades.assignZeroCredit() + for _, f in self.testCases: + if not f(grades): + testsFailed = True + if testsFailed: + grades.fail("Tests failed.") + else: + grades.assignFullCredit() + +class ExtraCreditPassAllTestsQuestion(Question): + def __init__(self, questionDict, display): + Question.__init__(self, questionDict, display) + self.extraPoints = int(questionDict['extra_points']) + + def execute(self, grades): + # TODO: is this the right way to use grades? The autograder doesn't seem to use it. + testsFailed = False + grades.assignZeroCredit() + for _, f in self.testCases: + if not f(grades): + testsFailed = True + if testsFailed: + grades.fail("Tests failed.") + else: + grades.assignFullCredit() + grades.addPoints(self.extraPoints) + +# Question in which predict credit is given for test cases with a ``points'' property. +# All other tests are mandatory and must be passed. +class HackedPartialCreditQuestion(Question): + + def execute(self, grades): + # TODO: is this the right way to use grades? The autograder doesn't seem to use it. + grades.assignZeroCredit() + + points = 0 + passed = True + for testCase, f in self.testCases: + testResult = f(grades) + if "points" in testCase.testDict: + if testResult: points += float(testCase.testDict["points"]) + else: + passed = passed and testResult + + ## FIXME: Below terrible hack to match q3's logic + if int(points) == self.maxPoints and not passed: + grades.assignZeroCredit() + else: + grades.addPoints(int(points)) + + +class Q6PartialCreditQuestion(Question): + """Fails any test which returns False, otherwise doesn't effect the grades object. + Partial credit tests will add the required points.""" + + def execute(self, grades): + grades.assignZeroCredit() + + results = [] + for _, f in self.testCases: + results.append(f(grades)) + if False in results: + grades.assignZeroCredit() + +class PartialCreditQuestion(Question): + """Fails any test which returns False, otherwise doesn't effect the grades object. + Partial credit tests will add the required points.""" + + def execute(self, grades): + grades.assignZeroCredit() + + for _, f in self.testCases: + if not f(grades): + grades.assignZeroCredit() + grades.fail("Tests failed.") + return False + + + +class NumberPassedQuestion(Question): + """Grade is the number of test cases passed.""" + + def execute(self, grades): + grades.addPoints([f(grades) for _, f in self.testCases].count(True)) + + + + + +# Template modeling a generic test case +class TestCase(object): + + def raiseNotDefined(self): + print 'Method not implemented: %s' % inspect.stack()[1][3] + sys.exit(1) + + def getPath(self): + return self.path + + def __init__(self, question, testDict): + self.question = question + self.testDict = testDict + self.path = testDict['path'] + self.messages = [] + + def __str__(self): + self.raiseNotDefined() + + def execute(self, grades, moduleDict, solutionDict): + self.raiseNotDefined() + + def writeSolution(self, moduleDict, filePath): + self.raiseNotDefined() + return True + + # Tests should call the following messages for grading + # to ensure a uniform format for test output. + # + # TODO: this is hairy, but we need to fix grading.py's interface + # to get a nice hierarchical project - question - test structure, + # then these should be moved into Question proper. + def testPass(self, grades): + grades.addMessage('PASS: %s' % (self.path,)) + for line in self.messages: + grades.addMessage(' %s' % (line,)) + return True + + def testFail(self, grades): + grades.addMessage('FAIL: %s' % (self.path,)) + for line in self.messages: + grades.addMessage(' %s' % (line,)) + return False + + # This should really be question level? + # + def testPartial(self, grades, points, maxPoints): + grades.addPoints(points) + extraCredit = max(0, points - maxPoints) + regularCredit = points - extraCredit + + grades.addMessage('%s: %s (%s of %s points)' % ("PASS" if points >= maxPoints else "FAIL", self.path, regularCredit, maxPoints)) + if extraCredit > 0: + grades.addMessage('EXTRA CREDIT: %s points' % (extraCredit,)) + + for line in self.messages: + grades.addMessage(' %s' % (line,)) + + return True + + def addMessage(self, message): + self.messages.extend(message.split('\n')) + diff --git a/search/testParser.py b/search/testParser.py new file mode 100644 index 0000000..ceedeaf --- /dev/null +++ b/search/testParser.py @@ -0,0 +1,85 @@ +# testParser.py +# ------------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +import re +import sys + +class TestParser(object): + + def __init__(self, path): + # save the path to the test file + self.path = path + + def removeComments(self, rawlines): + # remove any portion of a line following a '#' symbol + fixed_lines = [] + for l in rawlines: + idx = l.find('#') + if idx == -1: + fixed_lines.append(l) + else: + fixed_lines.append(l[0:idx]) + return '\n'.join(fixed_lines) + + def parse(self): + # read in the test case and remove comments + test = {} + with open(self.path) as handle: + raw_lines = handle.read().split('\n') + + test_text = self.removeComments(raw_lines) + test['__raw_lines__'] = raw_lines + test['path'] = self.path + test['__emit__'] = [] + lines = test_text.split('\n') + i = 0 + # read a property in each loop cycle + while(i < len(lines)): + # skip blank lines + if re.match('\A\s*\Z', lines[i]): + test['__emit__'].append(("raw", raw_lines[i])) + i += 1 + continue + m = re.match('\A([^"]*?):\s*"([^"]*)"\s*\Z', lines[i]) + if m: + test[m.group(1)] = m.group(2) + test['__emit__'].append(("oneline", m.group(1))) + i += 1 + continue + m = re.match('\A([^"]*?):\s*"""\s*\Z', lines[i]) + if m: + msg = [] + i += 1 + while(not re.match('\A\s*"""\s*\Z', lines[i])): + msg.append(raw_lines[i]) + i += 1 + test[m.group(1)] = '\n'.join(msg) + test['__emit__'].append(("multiline", m.group(1))) + i += 1 + continue + print 'error parsing test file: %s' % self.path + sys.exit(1) + return test + + +def emitTestDict(testDict, handle): + for kind, data in testDict['__emit__']: + if kind == "raw": + handle.write(data + "\n") + elif kind == "oneline": + handle.write('%s: "%s"\n' % (data, testDict[data])) + elif kind == "multiline": + handle.write('%s: """\n%s\n"""\n' % (data, testDict[data])) + else: + raise Exception("Bad __emit__") diff --git a/search/test_cases/CONFIG b/search/test_cases/CONFIG new file mode 100644 index 0000000..dbed66b --- /dev/null +++ b/search/test_cases/CONFIG @@ -0,0 +1 @@ +order: "q1 q2 q3 q4 q5 q6 q7 q8" \ No newline at end of file diff --git a/search/test_cases/q1/CONFIG b/search/test_cases/q1/CONFIG new file mode 100644 index 0000000..ad7e38a --- /dev/null +++ b/search/test_cases/q1/CONFIG @@ -0,0 +1,2 @@ +max_points: "3" +class: "PassAllTestsQuestion" diff --git a/search/test_cases/q1/graph_backtrack.solution b/search/test_cases/q1/graph_backtrack.solution new file mode 100644 index 0000000..c52850c --- /dev/null +++ b/search/test_cases/q1/graph_backtrack.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q1/graph_backtrack.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "1:A->C 0:C->G" +expanded_states: "A D C" +rev_solution: "1:A->C 0:C->G" +rev_expanded_states: "A B C" diff --git a/search/test_cases/q1/graph_backtrack.test b/search/test_cases/q1/graph_backtrack.test new file mode 100644 index 0000000..05640a0 --- /dev/null +++ b/search/test_cases/q1/graph_backtrack.test @@ -0,0 +1,32 @@ +class: "GraphSearchTest" +algorithm: "depthFirstSearch" + +diagram: """ + B + ^ + | +*A --> C --> G + | + V + D + +A is the start state, G is the goal. Arrows mark +possible state transitions. This tests whether +you extract the sequence of actions correctly even +if your search backtracks. If you fail this, your +nodes are not correctly tracking the sequences of +actions required to reach them. +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: G +A 0:A->B B 1.0 +A 1:A->C C 2.0 +A 2:A->D D 4.0 +C 0:C->G G 8.0 +""" diff --git a/search/test_cases/q1/graph_bfs_vs_dfs.solution b/search/test_cases/q1/graph_bfs_vs_dfs.solution new file mode 100644 index 0000000..0680f92 --- /dev/null +++ b/search/test_cases/q1/graph_bfs_vs_dfs.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q1/graph_bfs_vs_dfs.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "2:A->D 0:D->G" +expanded_states: "A D" +rev_solution: "0:A->B 0:B->D 0:D->G" +rev_expanded_states: "A B D" diff --git a/search/test_cases/q1/graph_bfs_vs_dfs.test b/search/test_cases/q1/graph_bfs_vs_dfs.test new file mode 100644 index 0000000..155e1fe --- /dev/null +++ b/search/test_cases/q1/graph_bfs_vs_dfs.test @@ -0,0 +1,30 @@ +# Graph where BFS finds the optimal solution but DFS does not +class: "GraphSearchTest" +algorithm: "depthFirstSearch" + +diagram: """ +/-- B +| ^ +| | +| *A -->[G] +| | ^ +| V | +\-->D ----/ + +A is the start state, G is the goal. Arrows +mark possible transitions +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: G +A 0:A->B B 1.0 +A 1:A->G G 2.0 +A 2:A->D D 4.0 +B 0:B->D D 8.0 +D 0:D->G G 16.0 +""" diff --git a/search/test_cases/q1/graph_infinite.solution b/search/test_cases/q1/graph_infinite.solution new file mode 100644 index 0000000..82203ee --- /dev/null +++ b/search/test_cases/q1/graph_infinite.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q1/graph_infinite.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "0:A->B 1:B->C 1:C->G" +expanded_states: "A B C" +rev_solution: "0:A->B 1:B->C 1:C->G" +rev_expanded_states: "A B C" diff --git a/search/test_cases/q1/graph_infinite.test b/search/test_cases/q1/graph_infinite.test new file mode 100644 index 0000000..692ac05 --- /dev/null +++ b/search/test_cases/q1/graph_infinite.test @@ -0,0 +1,30 @@ +# Graph where natural action choice leads to an infinite loop +class: "GraphSearchTest" +algorithm: "depthFirstSearch" + +diagram: """ + B <--> C + ^ /| + | / | + V / V +*A<-/ [G] + +A is the start state, G is the goal. Arrows mark +possible state transitions. +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: G +A 0:A->B B 1.0 +B 0:B->A A 2.0 +B 1:B->C C 4.0 +C 0:C->A A 8.0 +C 1:C->G G 16.0 +C 2:C->B B 32.0 +""" + diff --git a/search/test_cases/q1/graph_manypaths.solution b/search/test_cases/q1/graph_manypaths.solution new file mode 100644 index 0000000..34b5a82 --- /dev/null +++ b/search/test_cases/q1/graph_manypaths.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q1/graph_manypaths.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "2:A->B2 0:B2->C 0:C->D 2:D->E2 0:E2->F 0:F->G" +expanded_states: "A B2 C D E2 F" +rev_solution: "0:A->B1 0:B1->C 0:C->D 0:D->E1 0:E1->F 0:F->G" +rev_expanded_states: "A B1 C D E1 F" diff --git a/search/test_cases/q1/graph_manypaths.test b/search/test_cases/q1/graph_manypaths.test new file mode 100644 index 0000000..953c4eb --- /dev/null +++ b/search/test_cases/q1/graph_manypaths.test @@ -0,0 +1,39 @@ +class: "GraphSearchTest" +algorithm: "depthFirstSearch" + +diagram: """ + B1 E1 + ^ \ ^ \ + / V / V +*A --> C --> D --> F --> [G] + \ ^ \ ^ + V / V / + B2 E2 + +A is the start state, G is the goal. Arrows mark +possible state transitions. This graph has multiple +paths to the goal, where nodes with the same state +are added to the fringe multiple times before they +are expanded. +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: G +A 0:A->B1 B1 1.0 +A 1:A->C C 2.0 +A 2:A->B2 B2 4.0 +B1 0:B1->C C 8.0 +B2 0:B2->C C 16.0 +C 0:C->D D 32.0 +D 0:D->E1 E1 64.0 +D 1:D->F F 128.0 +D 2:D->E2 E2 256.0 +E1 0:E1->F F 512.0 +E2 0:E2->F F 1024.0 +F 0:F->G G 2048.0 +""" diff --git a/search/test_cases/q1/pacman_1.solution b/search/test_cases/q1/pacman_1.solution new file mode 100644 index 0000000..82a670c --- /dev/null +++ b/search/test_cases/q1/pacman_1.solution @@ -0,0 +1,40 @@ +# This is the solution file for test_cases/q1/pacman_1.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +# Number of nodes expanded must be with a factor of 1.0 of the numbers below. +solution: """ +West West West West West West West West West West West West West West +West West West West West West West West West West West West West West +West West West West West South South South South South South South +South South East East East North North North North North North North +East East South South South South South South East East North North +North North North North East East South South South South East East +North North East East East East East East East East South South South +East East East East East East East South South South South South South +South West West West West West West West West West West West West West +West West West West South West West West West West West West West West +""" +expanded_nodes: "146" +rev_solution: """ +South South West West West West South South East East East East South +South West West West West South South East East East East South South +West West West West South South South East North East East East South +South South West West West West West West West North North North North +North North North North West West West West West West West North North +North East East East East South East East East North North North West +West North North West West West West West West West West West West +West West West West West West West West West West West West West West +South South South South South South South South South East East East +North North North North North North North East East South South South +South South South East East North North North North North North East +East South South South South East East North North North North East +East East East East South South West West West South South East East +East South South West West West West West West South South West West +West West West South West West West West West South South East East +East East East East East North East East East East East North North +East East East East East East North East East East East East South +South West West West South West West West West West West South South +West West West West West South West West West West West West West West +West +""" +rev_expanded_nodes: "269" diff --git a/search/test_cases/q1/pacman_1.test b/search/test_cases/q1/pacman_1.test new file mode 100644 index 0000000..6ae5412 --- /dev/null +++ b/search/test_cases/q1/pacman_1.test @@ -0,0 +1,27 @@ +# This is a basic depth first search test +class: "PacmanSearchTest" +algorithm: "depthFirstSearch" + +# The following specifies the layout to be used +layoutName: "mediumMaze" +layout: """ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% P% +% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% % +% %% % % %%%%%%% %% % +% %% % % % % %%%% %%%%%%%%% %% %%%%% +% %% % % % % %% %% % +% %% % % % % % %%%% %%% %%%%%% % +% % % % % % %% %%%%%%%% % +% %% % % %%%%%%%% %% %% %%%%% +% %% % %% %%%%%%%%% %% % +% %%%%%% %%%%%%% %% %%%%%% % +%%%%%% % %%%% %% % % +% %%%%%% %%%%% % %% %% %%%%% +% %%%%%% % %%%%% %% % +% %%%%%% %%%%%%%%%%% %% %% % +%%%%%%%%%% %%%%%% % +%. %%%%%%%%%%%%%%%% % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +""" + diff --git a/search/test_cases/q2/CONFIG b/search/test_cases/q2/CONFIG new file mode 100644 index 0000000..ad7e38a --- /dev/null +++ b/search/test_cases/q2/CONFIG @@ -0,0 +1,2 @@ +max_points: "3" +class: "PassAllTestsQuestion" diff --git a/search/test_cases/q2/graph_backtrack.solution b/search/test_cases/q2/graph_backtrack.solution new file mode 100644 index 0000000..6c669c2 --- /dev/null +++ b/search/test_cases/q2/graph_backtrack.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q2/graph_backtrack.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "1:A->C 0:C->G" +expanded_states: "A B C D" +rev_solution: "1:A->C 0:C->G" +rev_expanded_states: "A D C B" diff --git a/search/test_cases/q2/graph_backtrack.test b/search/test_cases/q2/graph_backtrack.test new file mode 100644 index 0000000..2b35d8b --- /dev/null +++ b/search/test_cases/q2/graph_backtrack.test @@ -0,0 +1,32 @@ +class: "GraphSearchTest" +algorithm: "breadthFirstSearch" + +diagram: """ + B + ^ + | +*A --> C --> G + | + V + D + +A is the start state, G is the goal. Arrows mark +possible state transitions. This tests whether +you extract the sequence of actions correctly even +if your search backtracks. If you fail this, your +nodes are not correctly tracking the sequences of +actions required to reach them. +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: G +A 0:A->B B 1.0 +A 1:A->C C 2.0 +A 2:A->D D 4.0 +C 0:C->G G 8.0 +""" diff --git a/search/test_cases/q2/graph_bfs_vs_dfs.solution b/search/test_cases/q2/graph_bfs_vs_dfs.solution new file mode 100644 index 0000000..05eecc8 --- /dev/null +++ b/search/test_cases/q2/graph_bfs_vs_dfs.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q2/graph_bfs_vs_dfs.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "1:A->G" +expanded_states: "A B" +rev_solution: "1:A->G" +rev_expanded_states: "A D" diff --git a/search/test_cases/q2/graph_bfs_vs_dfs.test b/search/test_cases/q2/graph_bfs_vs_dfs.test new file mode 100644 index 0000000..47b78a6 --- /dev/null +++ b/search/test_cases/q2/graph_bfs_vs_dfs.test @@ -0,0 +1,30 @@ +# Graph where BFS finds the optimal solution but DFS does not +class: "GraphSearchTest" +algorithm: "breadthFirstSearch" + +diagram: """ +/-- B +| ^ +| | +| *A -->[G] +| | ^ +| V | +\-->D ----/ + +A is the start state, G is the goal. Arrows +mark possible transitions +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: G +A 0:A->B B 1.0 +A 1:A->G G 2.0 +A 2:A->D D 4.0 +B 0:B->D D 8.0 +D 0:D->G G 16.0 +""" diff --git a/search/test_cases/q2/graph_infinite.solution b/search/test_cases/q2/graph_infinite.solution new file mode 100644 index 0000000..17b621c --- /dev/null +++ b/search/test_cases/q2/graph_infinite.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q2/graph_infinite.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "0:A->B 1:B->C 1:C->G" +expanded_states: "A B C" +rev_solution: "0:A->B 1:B->C 1:C->G" +rev_expanded_states: "A B C" diff --git a/search/test_cases/q2/graph_infinite.test b/search/test_cases/q2/graph_infinite.test new file mode 100644 index 0000000..2cae9ad --- /dev/null +++ b/search/test_cases/q2/graph_infinite.test @@ -0,0 +1,30 @@ +# Graph where natural action choice leads to an infinite loop +class: "GraphSearchTest" +algorithm: "breadthFirstSearch" + +diagram: """ + B <--> C + ^ /| + | / | + V / V +*A<-/ [G] + +A is the start state, G is the goal. Arrows mark +possible state transitions. +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: G +A 0:A->B B 1.0 +B 0:B->A A 2.0 +B 1:B->C C 4.0 +C 0:C->A A 8.0 +C 1:C->G G 16.0 +C 2:C->B B 32.0 +""" + diff --git a/search/test_cases/q2/graph_manypaths.solution b/search/test_cases/q2/graph_manypaths.solution new file mode 100644 index 0000000..0cea422 --- /dev/null +++ b/search/test_cases/q2/graph_manypaths.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q2/graph_manypaths.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "1:A->C 0:C->D 1:D->F 0:F->G" +expanded_states: "A B1 C B2 D E1 F E2" +rev_solution: "1:A->C 0:C->D 1:D->F 0:F->G" +rev_expanded_states: "A B2 C B1 D E2 F E1" diff --git a/search/test_cases/q2/graph_manypaths.test b/search/test_cases/q2/graph_manypaths.test new file mode 100644 index 0000000..7c636ea --- /dev/null +++ b/search/test_cases/q2/graph_manypaths.test @@ -0,0 +1,39 @@ +class: "GraphSearchTest" +algorithm: "breadthFirstSearch" + +diagram: """ + B1 E1 + ^ \ ^ \ + / V / V +*A --> C --> D --> F --> [G] + \ ^ \ ^ + V / V / + B2 E2 + +A is the start state, G is the goal. Arrows mark +possible state transitions. This graph has multiple +paths to the goal, where nodes with the same state +are added to the fringe multiple times before they +are expanded. +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: G +A 0:A->B1 B1 1.0 +A 1:A->C C 2.0 +A 2:A->B2 B2 4.0 +B1 0:B1->C C 8.0 +B2 0:B2->C C 16.0 +C 0:C->D D 32.0 +D 0:D->E1 E1 64.0 +D 1:D->F F 128.0 +D 2:D->E2 E2 256.0 +E1 0:E1->F F 512.0 +E2 0:E2->F F 1024.0 +F 0:F->G G 2048.0 +""" diff --git a/search/test_cases/q2/pacman_1.solution b/search/test_cases/q2/pacman_1.solution new file mode 100644 index 0000000..8f6d2bd --- /dev/null +++ b/search/test_cases/q2/pacman_1.solution @@ -0,0 +1,22 @@ +# This is the solution file for test_cases/q2/pacman_1.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +# Number of nodes expanded must be with a factor of 1.0 of the numbers below. +solution: """ +West West West West West West West West West South South East East +South South South West West West North West West West West South South +South East East East East East East East South South South South South +South South West West West West West West West West West West West +West West West West West West South West West West West West West West +West West +""" +expanded_nodes: "269" +rev_solution: """ +West West West West West West West West West South South East East +South South South West West West North West West West West South South +South East East East East East East East South South South South South +South South West West West West West West West West West West West +West West West West West West South West West West West West West West +West West +""" +rev_expanded_nodes: "269" diff --git a/search/test_cases/q2/pacman_1.test b/search/test_cases/q2/pacman_1.test new file mode 100644 index 0000000..c913f0c --- /dev/null +++ b/search/test_cases/q2/pacman_1.test @@ -0,0 +1,27 @@ +# This is a basic breadth first search test +class: "PacmanSearchTest" +algorithm: "breadthFirstSearch" + +# The following specifies the layout to be used +layoutName: "mediumMaze" +layout: """ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% P% +% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% % +% %% % % %%%%%%% %% % +% %% % % % % %%%% %%%%%%%%% %% %%%%% +% %% % % % % %% %% % +% %% % % % % % %%%% %%% %%%%%% % +% % % % % % %% %%%%%%%% % +% %% % % %%%%%%%% %% %% %%%%% +% %% % %% %%%%%%%%% %% % +% %%%%%% %%%%%%% %% %%%%%% % +%%%%%% % %%%% %% % % +% %%%%%% %%%%% % %% %% %%%%% +% %%%%%% % %%%%% %% % +% %%%%%% %%%%%%%%%%% %% %% % +%%%%%%%%%% %%%%%% % +%. %%%%%%%%%%%%%%%% % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +""" + diff --git a/search/test_cases/q3/CONFIG b/search/test_cases/q3/CONFIG new file mode 100644 index 0000000..e5332c3 --- /dev/null +++ b/search/test_cases/q3/CONFIG @@ -0,0 +1,2 @@ +class: "PassAllTestsQuestion" +max_points: "3" diff --git a/search/test_cases/q3/graph_backtrack.solution b/search/test_cases/q3/graph_backtrack.solution new file mode 100644 index 0000000..d150cb7 --- /dev/null +++ b/search/test_cases/q3/graph_backtrack.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q3/graph_backtrack.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "1:A->C 0:C->G" +expanded_states: "A B C D" +rev_solution: "1:A->C 0:C->G" +rev_expanded_states: "A B C D" diff --git a/search/test_cases/q3/graph_backtrack.test b/search/test_cases/q3/graph_backtrack.test new file mode 100644 index 0000000..a74bd9e --- /dev/null +++ b/search/test_cases/q3/graph_backtrack.test @@ -0,0 +1,32 @@ +class: "GraphSearchTest" +algorithm: "uniformCostSearch" + +diagram: """ + B + ^ + | +*A --> C --> G + | + V + D + +A is the start state, G is the goal. Arrows mark +possible state transitions. This tests whether +you extract the sequence of actions correctly even +if your search backtracks. If you fail this, your +nodes are not correctly tracking the sequences of +actions required to reach them. +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: G +A 0:A->B B 1.0 +A 1:A->C C 2.0 +A 2:A->D D 4.0 +C 0:C->G G 8.0 +""" diff --git a/search/test_cases/q3/graph_bfs_vs_dfs.solution b/search/test_cases/q3/graph_bfs_vs_dfs.solution new file mode 100644 index 0000000..5dfffca --- /dev/null +++ b/search/test_cases/q3/graph_bfs_vs_dfs.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q3/graph_bfs_vs_dfs.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "1:A->G" +expanded_states: "A B" +rev_solution: "1:A->G" +rev_expanded_states: "A B" diff --git a/search/test_cases/q3/graph_bfs_vs_dfs.test b/search/test_cases/q3/graph_bfs_vs_dfs.test new file mode 100644 index 0000000..87aa465 --- /dev/null +++ b/search/test_cases/q3/graph_bfs_vs_dfs.test @@ -0,0 +1,30 @@ +# Graph where BFS finds the optimal solution but DFS does not +class: "GraphSearchTest" +algorithm: "uniformCostSearch" + +diagram: """ +/-- B +| ^ +| | +| *A -->[G] +| | ^ +| V | +\-->D ----/ + +A is the start state, G is the goal. Arrows +mark possible transitions +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: G +A 0:A->B B 1.0 +A 1:A->G G 2.0 +A 2:A->D D 4.0 +B 0:B->D D 8.0 +D 0:D->G G 16.0 +""" diff --git a/search/test_cases/q3/graph_infinite.solution b/search/test_cases/q3/graph_infinite.solution new file mode 100644 index 0000000..c6cd195 --- /dev/null +++ b/search/test_cases/q3/graph_infinite.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q3/graph_infinite.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "0:A->B 1:B->C 1:C->G" +expanded_states: "A B C" +rev_solution: "0:A->B 1:B->C 1:C->G" +rev_expanded_states: "A B C" diff --git a/search/test_cases/q3/graph_infinite.test b/search/test_cases/q3/graph_infinite.test new file mode 100644 index 0000000..80d807f --- /dev/null +++ b/search/test_cases/q3/graph_infinite.test @@ -0,0 +1,30 @@ +# Graph where natural action choice leads to an infinite loop +class: "GraphSearchTest" +algorithm: "uniformCostSearch" + +diagram: """ + B <--> C + ^ /| + | / | + V / V +*A<-/ [G] + +A is the start state, G is the goal. Arrows mark +possible state transitions. +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: G +A 0:A->B B 1.0 +B 0:B->A A 2.0 +B 1:B->C C 4.0 +C 0:C->A A 8.0 +C 1:C->G G 16.0 +C 2:C->B B 32.0 +""" + diff --git a/search/test_cases/q3/graph_manypaths.solution b/search/test_cases/q3/graph_manypaths.solution new file mode 100644 index 0000000..628568f --- /dev/null +++ b/search/test_cases/q3/graph_manypaths.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q3/graph_manypaths.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "1:A->C 0:C->D 1:D->F 0:F->G" +expanded_states: "A B1 C B2 D E1 F E2" +rev_solution: "1:A->C 0:C->D 1:D->F 0:F->G" +rev_expanded_states: "A B1 C B2 D E1 F E2" diff --git a/search/test_cases/q3/graph_manypaths.test b/search/test_cases/q3/graph_manypaths.test new file mode 100644 index 0000000..8c39dc7 --- /dev/null +++ b/search/test_cases/q3/graph_manypaths.test @@ -0,0 +1,39 @@ +class: "GraphSearchTest" +algorithm: "uniformCostSearch" + +diagram: """ + B1 E1 + ^ \ ^ \ + / V / V +*A --> C --> D --> F --> [G] + \ ^ \ ^ + V / V / + B2 E2 + +A is the start state, G is the goal. Arrows mark +possible state transitions. This graph has multiple +paths to the goal, where nodes with the same state +are added to the fringe multiple times before they +are expanded. +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: G +A 0:A->B1 B1 1.0 +A 1:A->C C 2.0 +A 2:A->B2 B2 4.0 +B1 0:B1->C C 8.0 +B2 0:B2->C C 16.0 +C 0:C->D D 32.0 +D 0:D->E1 E1 64.0 +D 1:D->F F 128.0 +D 2:D->E2 E2 256.0 +E1 0:E1->F F 512.0 +E2 0:E2->F F 1024.0 +F 0:F->G G 2048.0 +""" diff --git a/search/test_cases/q3/ucs_0_graph.solution b/search/test_cases/q3/ucs_0_graph.solution new file mode 100644 index 0000000..b8c1509 --- /dev/null +++ b/search/test_cases/q3/ucs_0_graph.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q3/ucs_0_graph.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "Right Down Down" +expanded_states: "A B D C G" +rev_solution: "Right Down Down" +rev_expanded_states: "A B D C G" diff --git a/search/test_cases/q3/ucs_0_graph.test b/search/test_cases/q3/ucs_0_graph.test new file mode 100644 index 0000000..e8f3d4c --- /dev/null +++ b/search/test_cases/q3/ucs_0_graph.test @@ -0,0 +1,39 @@ +class: "GraphSearchTest" +algorithm: "uniformCostSearch" + +diagram: """ + C + ^ + | 2 + 2 V 4 +*A <----> B -----> [H] + |1 + 1.5 V 2.5 + G <----- D -----> E + | + 2 | + V + [F] + +A is the start state, F and H is the goal. Arrows mark possible state +transitions. The number next to the arrow is the cost of that transition. +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: H F +A Right B 2.0 +B Right H 4.0 +B Down D 1.0 +B Up C 2.0 +B Left A 2.0 +C Down B 2.0 +D Right E 2.5 +D Down F 2.0 +D Left G 1.5 +""" + diff --git a/search/test_cases/q3/ucs_1_problemC.solution b/search/test_cases/q3/ucs_1_problemC.solution new file mode 100644 index 0000000..dc8fc4c --- /dev/null +++ b/search/test_cases/q3/ucs_1_problemC.solution @@ -0,0 +1,22 @@ +# This is the solution file for test_cases/q3/ucs_1_problemC.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +# Number of nodes expanded must be with a factor of 1.1 of the numbers below. +solution: """ +West West West West West West West West West South South East East +South South South West West West North West West West West South South +South East East East East East East East South South South South South +South South West West West West West West West West West West West +West West West West West West South West West West West West West West +West West +""" +expanded_nodes: "269" +rev_solution: """ +West West West West West West West West West South South East East +South South South West West West North West West West West South South +South East East East East East East East South South South South South +South South West West West West West West West West West West West +West West West West West West South West West West West West West West +West West +""" +rev_expanded_nodes: "269" diff --git a/search/test_cases/q3/ucs_1_problemC.test b/search/test_cases/q3/ucs_1_problemC.test new file mode 100644 index 0000000..1ce714d --- /dev/null +++ b/search/test_cases/q3/ucs_1_problemC.test @@ -0,0 +1,28 @@ +class: "PacmanSearchTest" +algorithm: "uniformCostSearch" +points: "0.5" + +# The following specifies the layout to be used +layoutName: "mediumMaze" +layout: """ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% P% +% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% % +% %% % % %%%%%%% %% % +% %% % % % % %%%% %%%%%%%%% %% %%%%% +% %% % % % % %% %% % +% %% % % % % % %%%% %%% %%%%%% % +% % % % % % %% %%%%%%%% % +% %% % % %%%%%%%% %% %% %%%%% +% %% % %% %%%%%%%%% %% % +% %%%%%% %%%%%%% %% %%%%%% % +%%%%%% % %%%% %% % % +% %%%%%% %%%%% % %% %% %%%%% +% %%%%%% % %%%%% %% % +% %%%%%% %%%%%%%%%%% %% %% % +%%%%%%%%%% %%%%%% % +%. %%%%%%%%%%%%%%%% % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +""" +leewayFactor: "1.1" +#costFn: "lambda pos: 1" diff --git a/search/test_cases/q3/ucs_2_problemE.solution b/search/test_cases/q3/ucs_2_problemE.solution new file mode 100644 index 0000000..d84245f --- /dev/null +++ b/search/test_cases/q3/ucs_2_problemE.solution @@ -0,0 +1,22 @@ +# This is the solution file for test_cases/q3/ucs_2_problemE.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +# Number of nodes expanded must be with a factor of 1.1 of the numbers below. +solution: """ +South South West West West West South South East East East East South +South West West West West South South East East East East South South +West West West West South South East East East East South South South +West West West West West West West North West West West West West West +West West West West West West West West West West West South West West +West West West West West West West +""" +expanded_nodes: "260" +rev_solution: """ +South South West West West West South South East East East East South +South West West West West South South East East East East South South +West West West West South South East East East East South South South +West West West West West West West North West West West West West West +West West West West West West West West West West West South West West +West West West West West West West +""" +rev_expanded_nodes: "260" diff --git a/search/test_cases/q3/ucs_2_problemE.test b/search/test_cases/q3/ucs_2_problemE.test new file mode 100644 index 0000000..3c609f2 --- /dev/null +++ b/search/test_cases/q3/ucs_2_problemE.test @@ -0,0 +1,28 @@ +class: "PacmanSearchTest" +algorithm: "uniformCostSearch" +points: "0.5" + +# The following specifies the layout to be used +layoutName: "mediumMaze" +layout: """ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% P% +% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% % +% %% % % %%%%%%% %% % +% %% % % % % %%%% %%%%%%%%% %% %%%%% +% %% % % % % %% %% % +% %% % % % % % %%%% %%% %%%%%% % +% % % % % % %% %%%%%%%% % +% %% % % %%%%%%%% %% %% %%%%% +% %% % %% %%%%%%%%% %% % +% %%%%%% %%%%%%% %% %%%%%% % +%%%%%% % %%%% %% % % +% %%%%%% %%%%% % %% %% %%%%% +% %%%%%% % %%%%% %% % +% %%%%%% %%%%%%%%%%% %% %% % +%%%%%%%%%% %%%%%% % +%. %%%%%%%%%%%%%%%% % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +""" +leewayFactor: "1.1" +costFn: "lambda pos: .5 ** pos[0]" diff --git a/search/test_cases/q3/ucs_3_problemW.solution b/search/test_cases/q3/ucs_3_problemW.solution new file mode 100644 index 0000000..e04325d --- /dev/null +++ b/search/test_cases/q3/ucs_3_problemW.solution @@ -0,0 +1,34 @@ +# This is the solution file for test_cases/q3/ucs_3_problemW.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +# Number of nodes expanded must be with a factor of 1.1 of the numbers below. +solution: """ +West West West West West West West West West West West West West West +West West West West West West West West West West West West West West +West West West West West South South South South South South South +South South East East East North North North North North North North +East East South South South South South South East East North North +North North North North East East South South South South East East +North North East East South South East East East South South West West +West West West West South South West West West West West South West +West West West West South South East East East East East East East +North East East East East East North North East East East East East +East South South West West West West South South West West West West +West South West West West West West West West West West +""" +expanded_nodes: "173" +rev_solution: """ +West West West West West West West West West West West West West West +West West West West West West West West West West West West West West +West West West West West South South South South South South South +South South East East East North North North North North North North +East East South South South South South South East East North North +North North North North East East South South South South East East +North North East East South South East East East South South West West +West West West West South South West West West West West South West +West West West West South South East East East East East East East +North East East East East East North North East East East East East +East South South West West West West South South West West West West +West South West West West West West West West West West +""" +rev_expanded_nodes: "173" diff --git a/search/test_cases/q3/ucs_3_problemW.test b/search/test_cases/q3/ucs_3_problemW.test new file mode 100644 index 0000000..fbc2fad --- /dev/null +++ b/search/test_cases/q3/ucs_3_problemW.test @@ -0,0 +1,28 @@ +class: "PacmanSearchTest" +algorithm: "uniformCostSearch" +points: "0.5" + +# The following specifies the layout to be used +layoutName: "mediumMaze" +layout: """ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% P% +% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% % +% %% % % %%%%%%% %% % +% %% % % % % %%%% %%%%%%%%% %% %%%%% +% %% % % % % %% %% % +% %% % % % % % %%%% %%% %%%%%% % +% % % % % % %% %%%%%%%% % +% %% % % %%%%%%%% %% %% %%%%% +% %% % %% %%%%%%%%% %% % +% %%%%%% %%%%%%% %% %%%%%% % +%%%%%% % %%%% %% % % +% %%%%%% %%%%% % %% %% %%%%% +% %%%%%% % %%%%% %% % +% %%%%%% %%%%%%%%%%% %% %% % +%%%%%%%%%% %%%%%% % +%. %%%%%%%%%%%%%%%% % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +""" +leewayFactor: "1.1" +costFn: "lambda pos: 2 ** pos[0]" diff --git a/search/test_cases/q3/ucs_4_testSearch.solution b/search/test_cases/q3/ucs_4_testSearch.solution new file mode 100644 index 0000000..b8c5303 --- /dev/null +++ b/search/test_cases/q3/ucs_4_testSearch.solution @@ -0,0 +1,12 @@ +# This is the solution file for test_cases/q3/ucs_4_testSearch.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +# Number of nodes expanded must be with a factor of 2.0 of the numbers below. +solution: """ +West East East South South West West +""" +expanded_nodes: "14" +rev_solution: """ +West East East South South West West +""" +rev_expanded_nodes: "13" diff --git a/search/test_cases/q3/ucs_4_testSearch.test b/search/test_cases/q3/ucs_4_testSearch.test new file mode 100644 index 0000000..a16c6d8 --- /dev/null +++ b/search/test_cases/q3/ucs_4_testSearch.test @@ -0,0 +1,16 @@ +class: "PacmanSearchTest" +algorithm: "uniformCostSearch" +points: "0.5" + +# The following specifies the layout to be used +layoutName: "testSearch" +layout: """ +%%%%% +%.P % +%%% % +%. % +%%%%% +""" +searchProblemClass: "FoodSearchProblem" +leewayFactor: "2" + diff --git a/search/test_cases/q3/ucs_5_goalAtDequeue.solution b/search/test_cases/q3/ucs_5_goalAtDequeue.solution new file mode 100644 index 0000000..7d6c982 --- /dev/null +++ b/search/test_cases/q3/ucs_5_goalAtDequeue.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q3/ucs_5_goalAtDequeue.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "1:A->B 0:B->C 0:C->G" +expanded_states: "A B C" +rev_solution: "1:A->B 0:B->C 0:C->G" +rev_expanded_states: "A B C" diff --git a/search/test_cases/q3/ucs_5_goalAtDequeue.test b/search/test_cases/q3/ucs_5_goalAtDequeue.test new file mode 100644 index 0000000..72b35bc --- /dev/null +++ b/search/test_cases/q3/ucs_5_goalAtDequeue.test @@ -0,0 +1,29 @@ +class: "GraphSearchTest" +algorithm: "uniformCostSearch" + +diagram: """ + 1 1 1 +*A ---> B ---> C ---> [G] + | ^ + | 10 | + \---------------------/ + +A is the start state, G is the goal. Arrows mark possible state +transitions. The number next to the arrow is the cost of that transition. + +If you fail this test case, you may be incorrectly testing if a node is a goal +before adding it into the queue, instead of testing when you remove the node +from the queue. See the algorithm pseudocode in lecture. +""" + +graph: """ +start_state: A +goal_states: G +A 0:A->G G 10.0 +A 1:A->B B 1.0 +B 0:B->C C 1.0 +C 0:C->G G 1.0 +""" +# We only care about the solution, not the expansion order. +exactExpansionOrder: "False" + diff --git a/search/test_cases/q4/CONFIG b/search/test_cases/q4/CONFIG new file mode 100644 index 0000000..b24223d --- /dev/null +++ b/search/test_cases/q4/CONFIG @@ -0,0 +1,2 @@ +class: "PassAllTestsQuestion" +max_points: "3" \ No newline at end of file diff --git a/search/test_cases/q4/astar_0.solution b/search/test_cases/q4/astar_0.solution new file mode 100644 index 0000000..459cadd --- /dev/null +++ b/search/test_cases/q4/astar_0.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q4/astar_0.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "Right Down Down" +expanded_states: "A B D C G" +rev_solution: "Right Down Down" +rev_expanded_states: "A B D C G" diff --git a/search/test_cases/q4/astar_0.test b/search/test_cases/q4/astar_0.test new file mode 100644 index 0000000..9b3b539 --- /dev/null +++ b/search/test_cases/q4/astar_0.test @@ -0,0 +1,39 @@ +class: "GraphSearchTest" +algorithm: "aStarSearch" + +diagram: """ + C + ^ + | 2 + 2 V 4 +*A <----> B -----> [H] + | + 1.5 V 2.5 + G <----- D -----> E + | + 2 | + V + [F] + +A is the start state, F and H is the goal. Arrows mark possible state +transitions. The number next to the arrow is the cost of that transition. +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: H F +A Right B 2.0 +B Right H 4.0 +B Down D 1.0 +B Up C 2.0 +B Left A 2.0 +C Down B 2.0 +D Right E 2.5 +D Down F 2.0 +D Left G 1.5 +""" + diff --git a/search/test_cases/q4/astar_1_graph_heuristic.solution b/search/test_cases/q4/astar_1_graph_heuristic.solution new file mode 100644 index 0000000..7767c27 --- /dev/null +++ b/search/test_cases/q4/astar_1_graph_heuristic.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q4/astar_1_graph_heuristic.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "0 0 2" +expanded_states: "S A D C" +rev_solution: "0 0 2" +rev_expanded_states: "S A D C" diff --git a/search/test_cases/q4/astar_1_graph_heuristic.test b/search/test_cases/q4/astar_1_graph_heuristic.test new file mode 100644 index 0000000..b5afd79 --- /dev/null +++ b/search/test_cases/q4/astar_1_graph_heuristic.test @@ -0,0 +1,54 @@ +class: "GraphSearchTest" +algorithm: "aStarSearch" + +diagram: """ + 2 3 2 + S --- A --- C ---> G + | \ / ^ +3 | \ 5 / 1 / + | \ / / + B --- D -------/ + 4 5 + +S is the start state, G is the goal. Arrows mark possible state +transitions. The number next to the arrow is the cost of that transition. + +The heuristic value of each state is: + S 6.0 + A 2.5 + B 5.25 + C 1.125 + D 1.0625 + G 0 +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: S +goal_states: G +S 0 A 2.0 +S 1 B 3.0 +S 2 D 5.0 +A 0 C 3.0 +A 1 S 2.0 +B 0 D 4.0 +B 1 S 3.0 +C 0 A 3.0 +C 1 D 1.0 +C 2 G 2.0 +D 0 B 4.0 +D 1 C 1.0 +D 2 G 5.0 +D 3 S 5.0 +""" +heuristic: """ +S 6.0 +A 2.5 +B 5.25 +C 1.125 +D 1.0625 +G 0 +""" diff --git a/search/test_cases/q4/astar_2_manhattan.solution b/search/test_cases/q4/astar_2_manhattan.solution new file mode 100644 index 0000000..65bf5f5 --- /dev/null +++ b/search/test_cases/q4/astar_2_manhattan.solution @@ -0,0 +1,22 @@ +# This is the solution file for test_cases/q4/astar_2_manhattan.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +# Number of nodes expanded must be with a factor of 1.1 of the numbers below. +solution: """ +West West West West West West West West West South South East East +South South South West West West North West West West West South South +South East East East East East East East South South South South South +South South West West West West West West West West West West West +West West West West West West South West West West West West West West +West West +""" +expanded_nodes: "221" +rev_solution: """ +West West West West West West West West West South South East East +South South South West West West North West West West West South South +South East East East East East East East South South South South South +South South West West West West West West West West West West West +West West West West West West South West West West West West West West +West West +""" +rev_expanded_nodes: "221" diff --git a/search/test_cases/q4/astar_2_manhattan.test b/search/test_cases/q4/astar_2_manhattan.test new file mode 100644 index 0000000..e936195 --- /dev/null +++ b/search/test_cases/q4/astar_2_manhattan.test @@ -0,0 +1,27 @@ +class: "PacmanSearchTest" +algorithm: "aStarSearch" + +# The following specifies the layout to be used +layoutName: "mediumMaze" +layout: """ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% P% +% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% % +% %% % % %%%%%%% %% % +% %% % % % % %%%% %%%%%%%%% %% %%%%% +% %% % % % % %% %% % +% %% % % % % % %%%% %%% %%%%%% % +% % % % % % %% %%%%%%%% % +% %% % % %%%%%%%% %% %% %%%%% +% %% % %% %%%%%%%%% %% % +% %%%%%% %%%%%%% %% %%%%%% % +%%%%%% % %%%% %% % % +% %%%%%% %%%%% % %% %% %%%%% +% %%%%%% % %%%%% %% % +% %%%%%% %%%%%%%%%%% %% %% % +%%%%%%%%%% %%%%%% % +%. %%%%%%%%%%%%%%%% % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +""" +leewayFactor: "1.1" +heuristic: "manhattanHeuristic" diff --git a/search/test_cases/q4/astar_3_goalAtDequeue.solution b/search/test_cases/q4/astar_3_goalAtDequeue.solution new file mode 100644 index 0000000..edb3502 --- /dev/null +++ b/search/test_cases/q4/astar_3_goalAtDequeue.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q4/astar_3_goalAtDequeue.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "1:A->B 0:B->C 0:C->G" +expanded_states: "A B C" +rev_solution: "1:A->B 0:B->C 0:C->G" +rev_expanded_states: "A B C" diff --git a/search/test_cases/q4/astar_3_goalAtDequeue.test b/search/test_cases/q4/astar_3_goalAtDequeue.test new file mode 100644 index 0000000..c4d1903 --- /dev/null +++ b/search/test_cases/q4/astar_3_goalAtDequeue.test @@ -0,0 +1,29 @@ +class: "GraphSearchTest" +algorithm: "aStarSearch" + +diagram: """ + 1 1 1 +*A ---> B ---> C ---> [G] + | ^ + | 10 | + \---------------------/ + +A is the start state, G is the goal. Arrows mark possible state +transitions. The number next to the arrow is the cost of that transition. + +If you fail this test case, you may be incorrectly testing if a node is a goal +before adding it into the queue, instead of testing when you remove the node +from the queue. See the algorithm pseudocode in lecture. +""" + +graph: """ +start_state: A +goal_states: G +A 0:A->G G 10.0 +A 1:A->B B 1.0 +B 0:B->C C 1.0 +C 0:C->G G 1.0 +""" +# We only care about the solution, not the expansion order. +exactExpansionOrder: "False" + diff --git a/search/test_cases/q4/graph_backtrack.solution b/search/test_cases/q4/graph_backtrack.solution new file mode 100644 index 0000000..fc51794 --- /dev/null +++ b/search/test_cases/q4/graph_backtrack.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q4/graph_backtrack.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "1:A->C 0:C->G" +expanded_states: "A B C D" +rev_solution: "1:A->C 0:C->G" +rev_expanded_states: "A B C D" diff --git a/search/test_cases/q4/graph_backtrack.test b/search/test_cases/q4/graph_backtrack.test new file mode 100644 index 0000000..84e0126 --- /dev/null +++ b/search/test_cases/q4/graph_backtrack.test @@ -0,0 +1,32 @@ +class: "GraphSearchTest" +algorithm: "aStarSearch" + +diagram: """ + B + ^ + | +*A --> C --> G + | + V + D + +A is the start state, G is the goal. Arrows mark +possible state transitions. This tests whether +you extract the sequence of actions correctly even +if your search backtracks. If you fail this, your +nodes are not correctly tracking the sequences of +actions required to reach them. +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: G +A 0:A->B B 1.0 +A 1:A->C C 2.0 +A 2:A->D D 4.0 +C 0:C->G G 8.0 +""" diff --git a/search/test_cases/q4/graph_manypaths.solution b/search/test_cases/q4/graph_manypaths.solution new file mode 100644 index 0000000..0caa767 --- /dev/null +++ b/search/test_cases/q4/graph_manypaths.solution @@ -0,0 +1,7 @@ +# This is the solution file for test_cases/q4/graph_manypaths.test. +# This solution is designed to support both right-to-left +# and left-to-right implementations. +solution: "1:A->C 0:C->D 1:D->F 0:F->G" +expanded_states: "A B1 C B2 D E1 F E2" +rev_solution: "1:A->C 0:C->D 1:D->F 0:F->G" +rev_expanded_states: "A B1 C B2 D E1 F E2" diff --git a/search/test_cases/q4/graph_manypaths.test b/search/test_cases/q4/graph_manypaths.test new file mode 100644 index 0000000..82fdf87 --- /dev/null +++ b/search/test_cases/q4/graph_manypaths.test @@ -0,0 +1,39 @@ +class: "GraphSearchTest" +algorithm: "aStarSearch" + +diagram: """ + B1 E1 + ^ \ ^ \ + / V / V +*A --> C --> D --> F --> [G] + \ ^ \ ^ + V / V / + B2 E2 + +A is the start state, G is the goal. Arrows mark +possible state transitions. This graph has multiple +paths to the goal, where nodes with the same state +are added to the fringe multiple times before they +are expanded. +""" +# The following section specifies the search problem and the solution. +# The graph is specified by first the set of start states, followed by +# the set of goal states, and lastly by the state transitions which are +# of the form: +# +graph: """ +start_state: A +goal_states: G +A 0:A->B1 B1 1.0 +A 1:A->C C 2.0 +A 2:A->B2 B2 4.0 +B1 0:B1->C C 8.0 +B2 0:B2->C C 16.0 +C 0:C->D D 32.0 +D 0:D->E1 E1 64.0 +D 1:D->F F 128.0 +D 2:D->E2 E2 256.0 +E1 0:E1->F F 512.0 +E2 0:E2->F F 1024.0 +F 0:F->G G 2048.0 +""" diff --git a/search/test_cases/q5/CONFIG b/search/test_cases/q5/CONFIG new file mode 100644 index 0000000..e7c6582 --- /dev/null +++ b/search/test_cases/q5/CONFIG @@ -0,0 +1,3 @@ +class: "PassAllTestsQuestion" +max_points: "3" +depends: "q2" \ No newline at end of file diff --git a/search/test_cases/q5/corner_tiny_corner.solution b/search/test_cases/q5/corner_tiny_corner.solution new file mode 100644 index 0000000..161bf15 --- /dev/null +++ b/search/test_cases/q5/corner_tiny_corner.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q5/corner_tiny_corner.test. +solution_length: "28" diff --git a/search/test_cases/q5/corner_tiny_corner.test b/search/test_cases/q5/corner_tiny_corner.test new file mode 100644 index 0000000..823bd47 --- /dev/null +++ b/search/test_cases/q5/corner_tiny_corner.test @@ -0,0 +1,14 @@ +class: "CornerProblemTest" + +layoutName: "tinyCorner" +layout: """ +%%%%%%%% +%. .% +% P % +% %%%% % +% % % +% % %%%% +%.% .% +%%%%%%%% +""" + diff --git a/search/test_cases/q6/CONFIG b/search/test_cases/q6/CONFIG new file mode 100644 index 0000000..b76e0eb --- /dev/null +++ b/search/test_cases/q6/CONFIG @@ -0,0 +1,3 @@ +class: "Q6PartialCreditQuestion" +max_points: "3" +depends: "q4" \ No newline at end of file diff --git a/search/test_cases/q6/corner_sanity_1.solution b/search/test_cases/q6/corner_sanity_1.solution new file mode 100644 index 0000000..4385d9b --- /dev/null +++ b/search/test_cases/q6/corner_sanity_1.solution @@ -0,0 +1,7 @@ +# In order for a heuristic to be admissible, the value +# of the heuristic must be less at each state than the +# true cost of the optimal path from that state to a goal. +cost: "8" +path: """ +North South South East East East North North +""" diff --git a/search/test_cases/q6/corner_sanity_1.test b/search/test_cases/q6/corner_sanity_1.test new file mode 100644 index 0000000..93379ac --- /dev/null +++ b/search/test_cases/q6/corner_sanity_1.test @@ -0,0 +1,12 @@ +class: "CornerHeuristicSanity" +points: "1" + +# The following specifies the layout to be used +layout: """ +%%%%%% +%. .% +%P % +%. .% +%%%%%% +""" + diff --git a/search/test_cases/q6/corner_sanity_2.solution b/search/test_cases/q6/corner_sanity_2.solution new file mode 100644 index 0000000..1aebe8a --- /dev/null +++ b/search/test_cases/q6/corner_sanity_2.solution @@ -0,0 +1,7 @@ +# In order for a heuristic to be admissible, the value +# of the heuristic must be less at each state than the +# true cost of the optimal path from that state to a goal. +cost: "8" +path: """ +West North North East East East South South +""" diff --git a/search/test_cases/q6/corner_sanity_2.test b/search/test_cases/q6/corner_sanity_2.test new file mode 100644 index 0000000..18184a8 --- /dev/null +++ b/search/test_cases/q6/corner_sanity_2.test @@ -0,0 +1,12 @@ +class: "CornerHeuristicSanity" +points: "1" + +# The following specifies the layout to be used +layout: """ +%%%%%% +%. .% +% %% % +%.P%.% +%%%%%% +""" + diff --git a/search/test_cases/q6/corner_sanity_3.solution b/search/test_cases/q6/corner_sanity_3.solution new file mode 100644 index 0000000..c02dd57 --- /dev/null +++ b/search/test_cases/q6/corner_sanity_3.solution @@ -0,0 +1,9 @@ +# In order for a heuristic to be admissible, the value +# of the heuristic must be less at each state than the +# true cost of the optimal path from that state to a goal. +cost: "28" +path: """ +South South South West West West West East East East East East North +North North North North West West West South South South West West +North North North +""" diff --git a/search/test_cases/q6/corner_sanity_3.test b/search/test_cases/q6/corner_sanity_3.test new file mode 100644 index 0000000..8f30442 --- /dev/null +++ b/search/test_cases/q6/corner_sanity_3.test @@ -0,0 +1,15 @@ +class: "CornerHeuristicSanity" +points: "1" + +# The following specifies the layout to be used +layout: """ +%%%%%%%% +%.% .% +% % % % +% % %P % +% % % +%%%%% % +%. .% +%%%%%%%% +""" + diff --git a/search/test_cases/q6/medium_corners.solution b/search/test_cases/q6/medium_corners.solution new file mode 100644 index 0000000..913dc45 --- /dev/null +++ b/search/test_cases/q6/medium_corners.solution @@ -0,0 +1,16 @@ +# This solution file specifies the length of the optimal path +# as well as the thresholds on number of nodes expanded to be +# used in scoring. +cost: "106" +path: """ +North East East East East North North West West West West North North +North North North North North North West West West West South South +East East East East South South South South South South West West +South South South West West East East North North North East East East +East East East East East South South East East East East East North +North East East North North East East North North East East East East +South South South South East East North North East East South South +South South South North North North North North North North West West +North North East East North North +""" +thresholds: "2000 1600 1200" diff --git a/search/test_cases/q6/medium_corners.test b/search/test_cases/q6/medium_corners.test new file mode 100644 index 0000000..dfa0a68 --- /dev/null +++ b/search/test_cases/q6/medium_corners.test @@ -0,0 +1,19 @@ +class: "CornerHeuristicPacman" + +# The following specifies the layout to be used +layout: """ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%. % % % %.% +% % % %%%%%% %%%%%%% % % +% % % % % % +%%%%% %%%%% %%% %% %%%%% % %%% +% % % % % % % % % +% %%% % % % %%%%%%%% %%% %%% % +% % %% % % % % +%%% % %%%%%%% %%%% %%% % % % % +% % %% % % % +% % %%%%% % %%%% % %%% %%% % % +% % % % % % %%% % +%. %P%%%%% % %%% % .% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +""" diff --git a/search/test_cases/q7/CONFIG b/search/test_cases/q7/CONFIG new file mode 100644 index 0000000..ee85183 --- /dev/null +++ b/search/test_cases/q7/CONFIG @@ -0,0 +1,3 @@ +class: "PartialCreditQuestion" +max_points: "4" +depends: "q4" \ No newline at end of file diff --git a/search/test_cases/q7/food_heuristic_1.solution b/search/test_cases/q7/food_heuristic_1.solution new file mode 100644 index 0000000..7a287f8 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_1.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_1.test. +solution_cost: "0" diff --git a/search/test_cases/q7/food_heuristic_1.test b/search/test_cases/q7/food_heuristic_1.test new file mode 100644 index 0000000..7545a7a --- /dev/null +++ b/search/test_cases/q7/food_heuristic_1.test @@ -0,0 +1,13 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 1" +layout: """ +%%%%%% +% % +% % +%P % +%%%%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_10.solution b/search/test_cases/q7/food_heuristic_10.solution new file mode 100644 index 0000000..1917f05 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_10.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_10.test. +solution_cost: "7" diff --git a/search/test_cases/q7/food_heuristic_10.test b/search/test_cases/q7/food_heuristic_10.test new file mode 100644 index 0000000..212c7bd --- /dev/null +++ b/search/test_cases/q7/food_heuristic_10.test @@ -0,0 +1,13 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 10" +layout: """ +%%%%%%%% +% % +%. P .% +% % +%%%%%%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_11.solution b/search/test_cases/q7/food_heuristic_11.solution new file mode 100644 index 0000000..11c3289 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_11.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_11.test. +solution_cost: "8" diff --git a/search/test_cases/q7/food_heuristic_11.test b/search/test_cases/q7/food_heuristic_11.test new file mode 100644 index 0000000..f5e6ed4 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_11.test @@ -0,0 +1,13 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 11" +layout: """ +%%%%%%%% +% % +% P % +%. . .% +%%%%%%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_12.solution b/search/test_cases/q7/food_heuristic_12.solution new file mode 100644 index 0000000..0edcc02 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_12.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_12.test. +solution_cost: "1" diff --git a/search/test_cases/q7/food_heuristic_12.test b/search/test_cases/q7/food_heuristic_12.test new file mode 100644 index 0000000..cc99a25 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_12.test @@ -0,0 +1,13 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 12" +layout: """ +%%%%%%%% +% % +% P.% +% % +%%%%%%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_13.solution b/search/test_cases/q7/food_heuristic_13.solution new file mode 100644 index 0000000..c25d50b --- /dev/null +++ b/search/test_cases/q7/food_heuristic_13.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_13.test. +solution_cost: "5" diff --git a/search/test_cases/q7/food_heuristic_13.test b/search/test_cases/q7/food_heuristic_13.test new file mode 100644 index 0000000..09d6f1e --- /dev/null +++ b/search/test_cases/q7/food_heuristic_13.test @@ -0,0 +1,13 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 13" +layout: """ +%%%%%%%% +% % +%P. .% +% % +%%%%%%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_14.solution b/search/test_cases/q7/food_heuristic_14.solution new file mode 100644 index 0000000..e6cc475 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_14.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_14.test. +solution_cost: "31" diff --git a/search/test_cases/q7/food_heuristic_14.test b/search/test_cases/q7/food_heuristic_14.test new file mode 100644 index 0000000..58982e3 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_14.test @@ -0,0 +1,19 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 14" +layout: """ +%%%%%%%%%% +% % +% ...%...% +% .%.%.%.% +% .%.%.%.% +% .%.%.%.% +% .%.%.%.% +% .%.%.%.% +%P.%...%.% +% % +%%%%%%%%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_15.solution b/search/test_cases/q7/food_heuristic_15.solution new file mode 100644 index 0000000..4eca0f1 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_15.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_15.test. +solution_cost: "21" diff --git a/search/test_cases/q7/food_heuristic_15.test b/search/test_cases/q7/food_heuristic_15.test new file mode 100644 index 0000000..df605c1 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_15.test @@ -0,0 +1,32 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 15" +layout: """ +%%% +% % +% % +% % +% % +% % +%.% +%.% +% % +% % +% % +% % +% % +% % +% % +%.% +% % +%P% +% % +% % +% % +% % +%.% +%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_16.solution b/search/test_cases/q7/food_heuristic_16.solution new file mode 100644 index 0000000..8d89992 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_16.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_16.test. +solution_cost: "7" diff --git a/search/test_cases/q7/food_heuristic_16.test b/search/test_cases/q7/food_heuristic_16.test new file mode 100644 index 0000000..762b433 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_16.test @@ -0,0 +1,15 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 16" +layout: """ +%%%% +% .% +% % +%P % +% % +% .% +%%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_17.solution b/search/test_cases/q7/food_heuristic_17.solution new file mode 100644 index 0000000..63a9a1b --- /dev/null +++ b/search/test_cases/q7/food_heuristic_17.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_17.test. +solution_cost: "16" diff --git a/search/test_cases/q7/food_heuristic_17.test b/search/test_cases/q7/food_heuristic_17.test new file mode 100644 index 0000000..a923f67 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_17.test @@ -0,0 +1,14 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 17" +layout: """ +%%%%%%%% +%.%....% +%.% %%.% +%.%P%%.% +%... .% +%%%%%%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_2.solution b/search/test_cases/q7/food_heuristic_2.solution new file mode 100644 index 0000000..ca5aba1 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_2.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_2.test. +solution_cost: "0" diff --git a/search/test_cases/q7/food_heuristic_2.test b/search/test_cases/q7/food_heuristic_2.test new file mode 100644 index 0000000..956e75d --- /dev/null +++ b/search/test_cases/q7/food_heuristic_2.test @@ -0,0 +1,32 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 2" +layout: """ +%%% +% % +% % +% % +% % +% % +% % +% % +% % +% % +% % +% % +% % +% % +% % +% % +% % +%P% +% % +% % +% % +% % +% % +%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_3.solution b/search/test_cases/q7/food_heuristic_3.solution new file mode 100644 index 0000000..d1694b5 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_3.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_3.test. +solution_cost: "0" diff --git a/search/test_cases/q7/food_heuristic_3.test b/search/test_cases/q7/food_heuristic_3.test new file mode 100644 index 0000000..250a8b1 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_3.test @@ -0,0 +1,15 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 3" +layout: """ +%%%% +% % +% % +%P % +% % +% % +%%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_4.solution b/search/test_cases/q7/food_heuristic_4.solution new file mode 100644 index 0000000..6e1e82a --- /dev/null +++ b/search/test_cases/q7/food_heuristic_4.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_4.test. +solution_cost: "0" diff --git a/search/test_cases/q7/food_heuristic_4.test b/search/test_cases/q7/food_heuristic_4.test new file mode 100644 index 0000000..ed86a0c --- /dev/null +++ b/search/test_cases/q7/food_heuristic_4.test @@ -0,0 +1,14 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 4" +layout: """ +%%%%%%%% +% % % +% % %% % +% %P%% % +% % +%%%%%%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_5.solution b/search/test_cases/q7/food_heuristic_5.solution new file mode 100644 index 0000000..779e9e6 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_5.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_5.test. +solution_cost: "11" diff --git a/search/test_cases/q7/food_heuristic_5.test b/search/test_cases/q7/food_heuristic_5.test new file mode 100644 index 0000000..1f44c48 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_5.test @@ -0,0 +1,13 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 5" +layout: """ +%%%%%% +%....% +%....% +%P...% +%%%%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_6.solution b/search/test_cases/q7/food_heuristic_6.solution new file mode 100644 index 0000000..906b510 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_6.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_6.test. +solution_cost: "5" diff --git a/search/test_cases/q7/food_heuristic_6.test b/search/test_cases/q7/food_heuristic_6.test new file mode 100644 index 0000000..01d7f32 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_6.test @@ -0,0 +1,13 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 6" +layout: """ +%%%%%% +% .% +%.P..% +% % +%%%%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_7.solution b/search/test_cases/q7/food_heuristic_7.solution new file mode 100644 index 0000000..5994a7b --- /dev/null +++ b/search/test_cases/q7/food_heuristic_7.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_7.test. +solution_cost: "7" diff --git a/search/test_cases/q7/food_heuristic_7.test b/search/test_cases/q7/food_heuristic_7.test new file mode 100644 index 0000000..b1db372 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_7.test @@ -0,0 +1,13 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 7" +layout: """ +%%%%%%% +% .% +%. P..% +% % +%%%%%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_8.solution b/search/test_cases/q7/food_heuristic_8.solution new file mode 100644 index 0000000..0e4fb08 --- /dev/null +++ b/search/test_cases/q7/food_heuristic_8.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_8.test. +solution_cost: "5" diff --git a/search/test_cases/q7/food_heuristic_8.test b/search/test_cases/q7/food_heuristic_8.test new file mode 100644 index 0000000..b9430af --- /dev/null +++ b/search/test_cases/q7/food_heuristic_8.test @@ -0,0 +1,13 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 8" +layout: """ +%%%%%% +% .% +% .% +%P .% +%%%%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_9.solution b/search/test_cases/q7/food_heuristic_9.solution new file mode 100644 index 0000000..1470d9a --- /dev/null +++ b/search/test_cases/q7/food_heuristic_9.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_9.test. +solution_cost: "6" diff --git a/search/test_cases/q7/food_heuristic_9.test b/search/test_cases/q7/food_heuristic_9.test new file mode 100644 index 0000000..799b41d --- /dev/null +++ b/search/test_cases/q7/food_heuristic_9.test @@ -0,0 +1,13 @@ +class: "HeuristicTest" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "Test 9" +layout: """ +%%%%%% +% %. % +% %%.% +%P. .% +%%%%%% +""" + diff --git a/search/test_cases/q7/food_heuristic_grade_tricky.solution b/search/test_cases/q7/food_heuristic_grade_tricky.solution new file mode 100644 index 0000000..cd6fd7d --- /dev/null +++ b/search/test_cases/q7/food_heuristic_grade_tricky.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q7/food_heuristic_grade_tricky.test. +# File intentionally blank. diff --git a/search/test_cases/q7/food_heuristic_grade_tricky.test b/search/test_cases/q7/food_heuristic_grade_tricky.test new file mode 100644 index 0000000..081fb0d --- /dev/null +++ b/search/test_cases/q7/food_heuristic_grade_tricky.test @@ -0,0 +1,19 @@ +class: "HeuristicGrade" + +heuristic: "foodHeuristic" +searchProblemClass: "FoodSearchProblem" +layoutName: "trickySearch" +layout: """ +%%%%%%%%%%%%%%%%%%%% +%. ..% % +%.%%.%%.%%.%%.%% % % +% P % % +%%%%%%%%%%%%%%%%%% % +%..... % +%%%%%%%%%%%%%%%%%%%% +""" +# One point always, an extra point for each +# threshold passed. +basePoints: "1" +gradingThresholds: "15000 12000 9000 7000" + diff --git a/search/test_cases/q8/CONFIG b/search/test_cases/q8/CONFIG new file mode 100644 index 0000000..b24223d --- /dev/null +++ b/search/test_cases/q8/CONFIG @@ -0,0 +1,2 @@ +class: "PassAllTestsQuestion" +max_points: "3" \ No newline at end of file diff --git a/search/test_cases/q8/closest_dot_1.solution b/search/test_cases/q8/closest_dot_1.solution new file mode 100644 index 0000000..300fc25 --- /dev/null +++ b/search/test_cases/q8/closest_dot_1.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q8/closest_dot_1.test. +solution_length: "1" diff --git a/search/test_cases/q8/closest_dot_1.test b/search/test_cases/q8/closest_dot_1.test new file mode 100644 index 0000000..672989f --- /dev/null +++ b/search/test_cases/q8/closest_dot_1.test @@ -0,0 +1,11 @@ +class: "ClosestDotTest" + +layoutName: "Test 1" +layout: """ +%%%%%% +%....% +%....% +%P...% +%%%%%% +""" + diff --git a/search/test_cases/q8/closest_dot_10.solution b/search/test_cases/q8/closest_dot_10.solution new file mode 100644 index 0000000..174b5dd --- /dev/null +++ b/search/test_cases/q8/closest_dot_10.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q8/closest_dot_10.test. +solution_length: "1" diff --git a/search/test_cases/q8/closest_dot_10.test b/search/test_cases/q8/closest_dot_10.test new file mode 100644 index 0000000..b1e0f33 --- /dev/null +++ b/search/test_cases/q8/closest_dot_10.test @@ -0,0 +1,17 @@ +class: "ClosestDotTest" + +layoutName: "Test 10" +layout: """ +%%%%%%%%%% +% % +% ...%...% +% .%.%.%.% +% .%.%.%.% +% .%.%.%.% +% .%.%.%.% +% .%.%.%.% +%P.%...%.% +% % +%%%%%%%%%% +""" + diff --git a/search/test_cases/q8/closest_dot_11.solution b/search/test_cases/q8/closest_dot_11.solution new file mode 100644 index 0000000..80bbe38 --- /dev/null +++ b/search/test_cases/q8/closest_dot_11.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q8/closest_dot_11.test. +solution_length: "2" diff --git a/search/test_cases/q8/closest_dot_11.test b/search/test_cases/q8/closest_dot_11.test new file mode 100644 index 0000000..0310a1e --- /dev/null +++ b/search/test_cases/q8/closest_dot_11.test @@ -0,0 +1,30 @@ +class: "ClosestDotTest" + +layoutName: "Test 11" +layout: """ +%%% +% % +% % +% % +% % +% % +%.% +%.% +% % +% % +% % +% % +% % +% % +% % +%.% +% % +%P% +% % +% % +% % +% % +%.% +%%% +""" + diff --git a/search/test_cases/q8/closest_dot_12.solution b/search/test_cases/q8/closest_dot_12.solution new file mode 100644 index 0000000..6f38bcb --- /dev/null +++ b/search/test_cases/q8/closest_dot_12.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q8/closest_dot_12.test. +solution_length: "3" diff --git a/search/test_cases/q8/closest_dot_12.test b/search/test_cases/q8/closest_dot_12.test new file mode 100644 index 0000000..a17b628 --- /dev/null +++ b/search/test_cases/q8/closest_dot_12.test @@ -0,0 +1,13 @@ +class: "ClosestDotTest" + +layoutName: "Test 12" +layout: """ +%%%% +% .% +% % +%P % +% % +% .% +%%%% +""" + diff --git a/search/test_cases/q8/closest_dot_13.solution b/search/test_cases/q8/closest_dot_13.solution new file mode 100644 index 0000000..7afa908 --- /dev/null +++ b/search/test_cases/q8/closest_dot_13.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q8/closest_dot_13.test. +solution_length: "1" diff --git a/search/test_cases/q8/closest_dot_13.test b/search/test_cases/q8/closest_dot_13.test new file mode 100644 index 0000000..87c423d --- /dev/null +++ b/search/test_cases/q8/closest_dot_13.test @@ -0,0 +1,12 @@ +class: "ClosestDotTest" + +layoutName: "Test 13" +layout: """ +%%%%%%%% +%.%....% +%.% %%.% +%.%P%%.% +%... .% +%%%%%%%% +""" + diff --git a/search/test_cases/q8/closest_dot_2.solution b/search/test_cases/q8/closest_dot_2.solution new file mode 100644 index 0000000..16d75de --- /dev/null +++ b/search/test_cases/q8/closest_dot_2.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q8/closest_dot_2.test. +solution_length: "1" diff --git a/search/test_cases/q8/closest_dot_2.test b/search/test_cases/q8/closest_dot_2.test new file mode 100644 index 0000000..4b59602 --- /dev/null +++ b/search/test_cases/q8/closest_dot_2.test @@ -0,0 +1,11 @@ +class: "ClosestDotTest" + +layoutName: "Test 2" +layout: """ +%%%%%% +% .% +%.P..% +% % +%%%%%% +""" + diff --git a/search/test_cases/q8/closest_dot_3.solution b/search/test_cases/q8/closest_dot_3.solution new file mode 100644 index 0000000..cbd5974 --- /dev/null +++ b/search/test_cases/q8/closest_dot_3.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q8/closest_dot_3.test. +solution_length: "1" diff --git a/search/test_cases/q8/closest_dot_3.test b/search/test_cases/q8/closest_dot_3.test new file mode 100644 index 0000000..aa2a3af --- /dev/null +++ b/search/test_cases/q8/closest_dot_3.test @@ -0,0 +1,11 @@ +class: "ClosestDotTest" + +layoutName: "Test 3" +layout: """ +%%%%%%% +% .% +%. P..% +% % +%%%%%%% +""" + diff --git a/search/test_cases/q8/closest_dot_4.solution b/search/test_cases/q8/closest_dot_4.solution new file mode 100644 index 0000000..ca520b5 --- /dev/null +++ b/search/test_cases/q8/closest_dot_4.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q8/closest_dot_4.test. +solution_length: "3" diff --git a/search/test_cases/q8/closest_dot_4.test b/search/test_cases/q8/closest_dot_4.test new file mode 100644 index 0000000..8499f6d --- /dev/null +++ b/search/test_cases/q8/closest_dot_4.test @@ -0,0 +1,11 @@ +class: "ClosestDotTest" + +layoutName: "Test 4" +layout: """ +%%%%%% +% .% +% .% +%P .% +%%%%%% +""" + diff --git a/search/test_cases/q8/closest_dot_5.solution b/search/test_cases/q8/closest_dot_5.solution new file mode 100644 index 0000000..5c526a2 --- /dev/null +++ b/search/test_cases/q8/closest_dot_5.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q8/closest_dot_5.test. +solution_length: "1" diff --git a/search/test_cases/q8/closest_dot_5.test b/search/test_cases/q8/closest_dot_5.test new file mode 100644 index 0000000..dfaee3d --- /dev/null +++ b/search/test_cases/q8/closest_dot_5.test @@ -0,0 +1,11 @@ +class: "ClosestDotTest" + +layoutName: "Test 5" +layout: """ +%%%%%% +% %. % +% %%.% +%P. .% +%%%%%% +""" + diff --git a/search/test_cases/q8/closest_dot_6.solution b/search/test_cases/q8/closest_dot_6.solution new file mode 100644 index 0000000..b06468a --- /dev/null +++ b/search/test_cases/q8/closest_dot_6.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q8/closest_dot_6.test. +solution_length: "2" diff --git a/search/test_cases/q8/closest_dot_6.test b/search/test_cases/q8/closest_dot_6.test new file mode 100644 index 0000000..bc50c57 --- /dev/null +++ b/search/test_cases/q8/closest_dot_6.test @@ -0,0 +1,11 @@ +class: "ClosestDotTest" + +layoutName: "Test 6" +layout: """ +%%%%%%%% +% % +%. P .% +% % +%%%%%%%% +""" + diff --git a/search/test_cases/q8/closest_dot_7.solution b/search/test_cases/q8/closest_dot_7.solution new file mode 100644 index 0000000..3231b28 --- /dev/null +++ b/search/test_cases/q8/closest_dot_7.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q8/closest_dot_7.test. +solution_length: "1" diff --git a/search/test_cases/q8/closest_dot_7.test b/search/test_cases/q8/closest_dot_7.test new file mode 100644 index 0000000..746e89a --- /dev/null +++ b/search/test_cases/q8/closest_dot_7.test @@ -0,0 +1,11 @@ +class: "ClosestDotTest" + +layoutName: "Test 7" +layout: """ +%%%%%%%% +% % +% P % +%. . .% +%%%%%%%% +""" + diff --git a/search/test_cases/q8/closest_dot_8.solution b/search/test_cases/q8/closest_dot_8.solution new file mode 100644 index 0000000..646e621 --- /dev/null +++ b/search/test_cases/q8/closest_dot_8.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q8/closest_dot_8.test. +solution_length: "1" diff --git a/search/test_cases/q8/closest_dot_8.test b/search/test_cases/q8/closest_dot_8.test new file mode 100644 index 0000000..c266ae1 --- /dev/null +++ b/search/test_cases/q8/closest_dot_8.test @@ -0,0 +1,11 @@ +class: "ClosestDotTest" + +layoutName: "Test 8" +layout: """ +%%%%%%%% +% % +% P.% +% % +%%%%%%%% +""" + diff --git a/search/test_cases/q8/closest_dot_9.solution b/search/test_cases/q8/closest_dot_9.solution new file mode 100644 index 0000000..6c94aa5 --- /dev/null +++ b/search/test_cases/q8/closest_dot_9.solution @@ -0,0 +1,2 @@ +# This is the solution file for test_cases/q8/closest_dot_9.test. +solution_length: "1" diff --git a/search/test_cases/q8/closest_dot_9.test b/search/test_cases/q8/closest_dot_9.test new file mode 100644 index 0000000..da078de --- /dev/null +++ b/search/test_cases/q8/closest_dot_9.test @@ -0,0 +1,11 @@ +class: "ClosestDotTest" + +layoutName: "Test 9" +layout: """ +%%%%%%%% +% % +%P. .% +% % +%%%%%%%% +""" + diff --git a/search/textDisplay.py b/search/textDisplay.py new file mode 100644 index 0000000..e920ad4 --- /dev/null +++ b/search/textDisplay.py @@ -0,0 +1,81 @@ +# textDisplay.py +# -------------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +import time +try: + import pacman +except: + pass + +DRAW_EVERY = 1 +SLEEP_TIME = 0 # This can be overwritten by __init__ +DISPLAY_MOVES = False +QUIET = False # Supresses output + +class NullGraphics: + def initialize(self, state, isBlue = False): + pass + + def update(self, state): + pass + + def checkNullDisplay(self): + return True + + def pause(self): + time.sleep(SLEEP_TIME) + + def draw(self, state): + print state + + def updateDistributions(self, dist): + pass + + def finish(self): + pass + +class PacmanGraphics: + def __init__(self, speed=None): + if speed != None: + global SLEEP_TIME + SLEEP_TIME = speed + + def initialize(self, state, isBlue = False): + self.draw(state) + self.pause() + self.turn = 0 + self.agentCounter = 0 + + def update(self, state): + numAgents = len(state.agentStates) + self.agentCounter = (self.agentCounter + 1) % numAgents + if self.agentCounter == 0: + self.turn += 1 + if DISPLAY_MOVES: + ghosts = [pacman.nearestPoint(state.getGhostPosition(i)) for i in range(1, numAgents)] + print "%4d) P: %-8s" % (self.turn, str(pacman.nearestPoint(state.getPacmanPosition()))),'| Score: %-5d' % state.score,'| Ghosts:', ghosts + if self.turn % DRAW_EVERY == 0: + self.draw(state) + self.pause() + if state._win or state._lose: + self.draw(state) + + def pause(self): + time.sleep(SLEEP_TIME) + + def draw(self, state): + print state + + def finish(self): + pass diff --git a/search/util.py b/search/util.py new file mode 100644 index 0000000..5b066ed --- /dev/null +++ b/search/util.py @@ -0,0 +1,674 @@ +# util.py +# ------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +# util.py +# ------- +# Licensing Information: You are free to use or extend these projects for +# educational purposes provided that (1) you do not distribute or publish +# solutions, (2) you retain this notice, and (3) you provide clear +# attribution to UC Berkeley, including a link to http://ai.berkeley.edu. +# +# Attribution Information: The Pacman AI projects were developed at UC Berkeley. +# The core projects and autograders were primarily created by John DeNero +# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). +# Student side autograding was added by Brad Miller, Nick Hay, and +# Pieter Abbeel (pabbeel@cs.berkeley.edu). + + +import sys +import inspect +import heapq, random +import cStringIO + + +class FixedRandom: + def __init__(self): + fixedState = (3, (2147483648L, 507801126L, 683453281L, 310439348L, 2597246090L, \ + 2209084787L, 2267831527L, 979920060L, 3098657677L, 37650879L, 807947081L, 3974896263L, \ + 881243242L, 3100634921L, 1334775171L, 3965168385L, 746264660L, 4074750168L, 500078808L, \ + 776561771L, 702988163L, 1636311725L, 2559226045L, 157578202L, 2498342920L, 2794591496L, \ + 4130598723L, 496985844L, 2944563015L, 3731321600L, 3514814613L, 3362575829L, 3038768745L, \ + 2206497038L, 1108748846L, 1317460727L, 3134077628L, 988312410L, 1674063516L, 746456451L, \ + 3958482413L, 1857117812L, 708750586L, 1583423339L, 3466495450L, 1536929345L, 1137240525L, \ + 3875025632L, 2466137587L, 1235845595L, 4214575620L, 3792516855L, 657994358L, 1241843248L, \ + 1695651859L, 3678946666L, 1929922113L, 2351044952L, 2317810202L, 2039319015L, 460787996L, \ + 3654096216L, 4068721415L, 1814163703L, 2904112444L, 1386111013L, 574629867L, 2654529343L, \ + 3833135042L, 2725328455L, 552431551L, 4006991378L, 1331562057L, 3710134542L, 303171486L, \ + 1203231078L, 2670768975L, 54570816L, 2679609001L, 578983064L, 1271454725L, 3230871056L, \ + 2496832891L, 2944938195L, 1608828728L, 367886575L, 2544708204L, 103775539L, 1912402393L, \ + 1098482180L, 2738577070L, 3091646463L, 1505274463L, 2079416566L, 659100352L, 839995305L, \ + 1696257633L, 274389836L, 3973303017L, 671127655L, 1061109122L, 517486945L, 1379749962L, \ + 3421383928L, 3116950429L, 2165882425L, 2346928266L, 2892678711L, 2936066049L, 1316407868L, \ + 2873411858L, 4279682888L, 2744351923L, 3290373816L, 1014377279L, 955200944L, 4220990860L, \ + 2386098930L, 1772997650L, 3757346974L, 1621616438L, 2877097197L, 442116595L, 2010480266L, \ + 2867861469L, 2955352695L, 605335967L, 2222936009L, 2067554933L, 4129906358L, 1519608541L, \ + 1195006590L, 1942991038L, 2736562236L, 279162408L, 1415982909L, 4099901426L, 1732201505L, \ + 2934657937L, 860563237L, 2479235483L, 3081651097L, 2244720867L, 3112631622L, 1636991639L, \ + 3860393305L, 2312061927L, 48780114L, 1149090394L, 2643246550L, 1764050647L, 3836789087L, \ + 3474859076L, 4237194338L, 1735191073L, 2150369208L, 92164394L, 756974036L, 2314453957L, \ + 323969533L, 4267621035L, 283649842L, 810004843L, 727855536L, 1757827251L, 3334960421L, \ + 3261035106L, 38417393L, 2660980472L, 1256633965L, 2184045390L, 811213141L, 2857482069L, \ + 2237770878L, 3891003138L, 2787806886L, 2435192790L, 2249324662L, 3507764896L, 995388363L, \ + 856944153L, 619213904L, 3233967826L, 3703465555L, 3286531781L, 3863193356L, 2992340714L, \ + 413696855L, 3865185632L, 1704163171L, 3043634452L, 2225424707L, 2199018022L, 3506117517L, \ + 3311559776L, 3374443561L, 1207829628L, 668793165L, 1822020716L, 2082656160L, 1160606415L, \ + 3034757648L, 741703672L, 3094328738L, 459332691L, 2702383376L, 1610239915L, 4162939394L, \ + 557861574L, 3805706338L, 3832520705L, 1248934879L, 3250424034L, 892335058L, 74323433L, \ + 3209751608L, 3213220797L, 3444035873L, 3743886725L, 1783837251L, 610968664L, 580745246L, \ + 4041979504L, 201684874L, 2673219253L, 1377283008L, 3497299167L, 2344209394L, 2304982920L, \ + 3081403782L, 2599256854L, 3184475235L, 3373055826L, 695186388L, 2423332338L, 222864327L, \ + 1258227992L, 3627871647L, 3487724980L, 4027953808L, 3053320360L, 533627073L, 3026232514L, \ + 2340271949L, 867277230L, 868513116L, 2158535651L, 2487822909L, 3428235761L, 3067196046L, \ + 3435119657L, 1908441839L, 788668797L, 3367703138L, 3317763187L, 908264443L, 2252100381L, \ + 764223334L, 4127108988L, 384641349L, 3377374722L, 1263833251L, 1958694944L, 3847832657L, \ + 1253909612L, 1096494446L, 555725445L, 2277045895L, 3340096504L, 1383318686L, 4234428127L, \ + 1072582179L, 94169494L, 1064509968L, 2681151917L, 2681864920L, 734708852L, 1338914021L, \ + 1270409500L, 1789469116L, 4191988204L, 1716329784L, 2213764829L, 3712538840L, 919910444L, \ + 1318414447L, 3383806712L, 3054941722L, 3378649942L, 1205735655L, 1268136494L, 2214009444L, \ + 2532395133L, 3232230447L, 230294038L, 342599089L, 772808141L, 4096882234L, 3146662953L, \ + 2784264306L, 1860954704L, 2675279609L, 2984212876L, 2466966981L, 2627986059L, 2985545332L, \ + 2578042598L, 1458940786L, 2944243755L, 3959506256L, 1509151382L, 325761900L, 942251521L, \ + 4184289782L, 2756231555L, 3297811774L, 1169708099L, 3280524138L, 3805245319L, 3227360276L, \ + 3199632491L, 2235795585L, 2865407118L, 36763651L, 2441503575L, 3314890374L, 1755526087L, \ + 17915536L, 1196948233L, 949343045L, 3815841867L, 489007833L, 2654997597L, 2834744136L, \ + 417688687L, 2843220846L, 85621843L, 747339336L, 2043645709L, 3520444394L, 1825470818L, \ + 647778910L, 275904777L, 1249389189L, 3640887431L, 4200779599L, 323384601L, 3446088641L, \ + 4049835786L, 1718989062L, 3563787136L, 44099190L, 3281263107L, 22910812L, 1826109246L, \ + 745118154L, 3392171319L, 1571490704L, 354891067L, 815955642L, 1453450421L, 940015623L, \ + 796817754L, 1260148619L, 3898237757L, 176670141L, 1870249326L, 3317738680L, 448918002L, \ + 4059166594L, 2003827551L, 987091377L, 224855998L, 3520570137L, 789522610L, 2604445123L, \ + 454472869L, 475688926L, 2990723466L, 523362238L, 3897608102L, 806637149L, 2642229586L, \ + 2928614432L, 1564415411L, 1691381054L, 3816907227L, 4082581003L, 1895544448L, 3728217394L, \ + 3214813157L, 4054301607L, 1882632454L, 2873728645L, 3694943071L, 1297991732L, 2101682438L, \ + 3952579552L, 678650400L, 1391722293L, 478833748L, 2976468591L, 158586606L, 2576499787L, \ + 662690848L, 3799889765L, 3328894692L, 2474578497L, 2383901391L, 1718193504L, 3003184595L, \ + 3630561213L, 1929441113L, 3848238627L, 1594310094L, 3040359840L, 3051803867L, 2462788790L, \ + 954409915L, 802581771L, 681703307L, 545982392L, 2738993819L, 8025358L, 2827719383L, \ + 770471093L, 3484895980L, 3111306320L, 3900000891L, 2116916652L, 397746721L, 2087689510L, \ + 721433935L, 1396088885L, 2751612384L, 1998988613L, 2135074843L, 2521131298L, 707009172L, \ + 2398321482L, 688041159L, 2264560137L, 482388305L, 207864885L, 3735036991L, 3490348331L, \ + 1963642811L, 3260224305L, 3493564223L, 1939428454L, 1128799656L, 1366012432L, 2858822447L, \ + 1428147157L, 2261125391L, 1611208390L, 1134826333L, 2374102525L, 3833625209L, 2266397263L, \ + 3189115077L, 770080230L, 2674657172L, 4280146640L, 3604531615L, 4235071805L, 3436987249L, \ + 509704467L, 2582695198L, 4256268040L, 3391197562L, 1460642842L, 1617931012L, 457825497L, \ + 1031452907L, 1330422862L, 4125947620L, 2280712485L, 431892090L, 2387410588L, 2061126784L, \ + 896457479L, 3480499461L, 2488196663L, 4021103792L, 1877063114L, 2744470201L, 1046140599L, \ + 2129952955L, 3583049218L, 4217723693L, 2720341743L, 820661843L, 1079873609L, 3360954200L, \ + 3652304997L, 3335838575L, 2178810636L, 1908053374L, 4026721976L, 1793145418L, 476541615L, \ + 973420250L, 515553040L, 919292001L, 2601786155L, 1685119450L, 3030170809L, 1590676150L, \ + 1665099167L, 651151584L, 2077190587L, 957892642L, 646336572L, 2743719258L, 866169074L, \ + 851118829L, 4225766285L, 963748226L, 799549420L, 1955032629L, 799460000L, 2425744063L, \ + 2441291571L, 1928963772L, 528930629L, 2591962884L, 3495142819L, 1896021824L, 901320159L, \ + 3181820243L, 843061941L, 3338628510L, 3782438992L, 9515330L, 1705797226L, 953535929L, \ + 764833876L, 3202464965L, 2970244591L, 519154982L, 3390617541L, 566616744L, 3438031503L, \ + 1853838297L, 170608755L, 1393728434L, 676900116L, 3184965776L, 1843100290L, 78995357L, \ + 2227939888L, 3460264600L, 1745705055L, 1474086965L, 572796246L, 4081303004L, 882828851L, \ + 1295445825L, 137639900L, 3304579600L, 2722437017L, 4093422709L, 273203373L, 2666507854L, \ + 3998836510L, 493829981L, 1623949669L, 3482036755L, 3390023939L, 833233937L, 1639668730L, \ + 1499455075L, 249728260L, 1210694006L, 3836497489L, 1551488720L, 3253074267L, 3388238003L, \ + 2372035079L, 3945715164L, 2029501215L, 3362012634L, 2007375355L, 4074709820L, 631485888L, \ + 3135015769L, 4273087084L, 3648076204L, 2739943601L, 1374020358L, 1760722448L, 3773939706L, \ + 1313027823L, 1895251226L, 4224465911L, 421382535L, 1141067370L, 3660034846L, 3393185650L, \ + 1850995280L, 1451917312L, 3841455409L, 3926840308L, 1397397252L, 2572864479L, 2500171350L, \ + 3119920613L, 531400869L, 1626487579L, 1099320497L, 407414753L, 2438623324L, 99073255L, \ + 3175491512L, 656431560L, 1153671785L, 236307875L, 2824738046L, 2320621382L, 892174056L, \ + 230984053L, 719791226L, 2718891946L, 624L), None) + self.random = random.Random() + self.random.setstate(fixedState) + +""" + Data structures useful for implementing SearchAgents +""" + +class Stack: + "A container with a last-in-first-out (LIFO) queuing policy." + def __init__(self): + self.list = [] + + def push(self,item): + "Push 'item' onto the stack" + self.list.append(item) + + def pop(self): + "Pop the most recently pushed item from the stack" + return self.list.pop() + + def isEmpty(self): + "Returns true if the stack is empty" + return len(self.list) == 0 + +class Queue: + "A container with a first-in-first-out (FIFO) queuing policy." + def __init__(self): + self.list = [] + + def push(self,item): + "Enqueue the 'item' into the queue" + self.list.insert(0,item) + + def pop(self): + """ + Dequeue the earliest enqueued item still in the queue. This + operation removes the item from the queue. + """ + return self.list.pop() + + def isEmpty(self): + "Returns true if the queue is empty" + return len(self.list) == 0 + +class PriorityQueue: + """ + Implements a priority queue data structure. Each inserted item + has a priority associated with it and the client is usually interested + in quick retrieval of the lowest-priority item in the queue. This + data structure allows O(1) access to the lowest-priority item. + """ + def __init__(self): + self.heap = [] + self.count = 0 + + def push(self, item, priority): + entry = (priority, self.count, item) + heapq.heappush(self.heap, entry) + self.count += 1 + + def pop(self): + (_, _, item) = heapq.heappop(self.heap) + return item + + def isEmpty(self): + return len(self.heap) == 0 + + def update(self, item, priority): + # If item already in priority queue with higher priority, update its priority and rebuild the heap. + # If item already in priority queue with equal or lower priority, do nothing. + # If item not in priority queue, do the same thing as self.push. + for index, (p, c, i) in enumerate(self.heap): + if i == item: + if p <= priority: + break + del self.heap[index] + self.heap.append((priority, c, item)) + heapq.heapify(self.heap) + break + else: + self.push(item, priority) + +class PriorityQueueWithFunction(PriorityQueue): + """ + Implements a priority queue with the same push/pop signature of the + Queue and the Stack classes. This is designed for drop-in replacement for + those two classes. The caller has to provide a priority function, which + extracts each item's priority. + """ + def __init__(self, priorityFunction): + "priorityFunction (item) -> priority" + self.priorityFunction = priorityFunction # store the priority function + PriorityQueue.__init__(self) # super-class initializer + + def push(self, item): + "Adds an item to the queue with priority from the priority function" + PriorityQueue.push(self, item, self.priorityFunction(item)) + + +def manhattanDistance( xy1, xy2 ): + "Returns the Manhattan distance between points xy1 and xy2" + return abs( xy1[0] - xy2[0] ) + abs( xy1[1] - xy2[1] ) + +""" + Data structures and functions useful for various course projects + + The search project should not need anything below this line. +""" + +class Counter(dict): + """ + A counter keeps track of counts for a set of keys. + + The counter class is an extension of the standard python + dictionary type. It is specialized to have number values + (integers or floats), and includes a handful of additional + functions to ease the task of counting data. In particular, + all keys are defaulted to have value 0. Using a dictionary: + + a = {} + print a['test'] + + would give an error, while the Counter class analogue: + + >>> a = Counter() + >>> print a['test'] + 0 + + returns the default 0 value. Note that to reference a key + that you know is contained in the counter, + you can still use the dictionary syntax: + + >>> a = Counter() + >>> a['test'] = 2 + >>> print a['test'] + 2 + + This is very useful for counting things without initializing their counts, + see for example: + + >>> a['blah'] += 1 + >>> print a['blah'] + 1 + + The counter also includes additional functionality useful in implementing + the classifiers for this assignment. Two counters can be added, + subtracted or multiplied together. See below for details. They can + also be normalized and their total count and arg max can be extracted. + """ + def __getitem__(self, idx): + self.setdefault(idx, 0) + return dict.__getitem__(self, idx) + + def incrementAll(self, keys, count): + """ + Increments all elements of keys by the same count. + + >>> a = Counter() + >>> a.incrementAll(['one','two', 'three'], 1) + >>> a['one'] + 1 + >>> a['two'] + 1 + """ + for key in keys: + self[key] += count + + def argMax(self): + """ + Returns the key with the highest value. + """ + if len(self.keys()) == 0: return None + all = self.items() + values = [x[1] for x in all] + maxIndex = values.index(max(values)) + return all[maxIndex][0] + + def sortedKeys(self): + """ + Returns a list of keys sorted by their values. Keys + with the highest values will appear first. + + >>> a = Counter() + >>> a['first'] = -2 + >>> a['second'] = 4 + >>> a['third'] = 1 + >>> a.sortedKeys() + ['second', 'third', 'first'] + """ + sortedItems = self.items() + compare = lambda x, y: sign(y[1] - x[1]) + sortedItems.sort(cmp=compare) + return [x[0] for x in sortedItems] + + def totalCount(self): + """ + Returns the sum of counts for all keys. + """ + return sum(self.values()) + + def normalize(self): + """ + Edits the counter such that the total count of all + keys sums to 1. The ratio of counts for all keys + will remain the same. Note that normalizing an empty + Counter will result in an error. + """ + total = float(self.totalCount()) + if total == 0: return + for key in self.keys(): + self[key] = self[key] / total + + def divideAll(self, divisor): + """ + Divides all counts by divisor + """ + divisor = float(divisor) + for key in self: + self[key] /= divisor + + def copy(self): + """ + Returns a copy of the counter + """ + return Counter(dict.copy(self)) + + def __mul__(self, y ): + """ + Multiplying two counters gives the dot product of their vectors where + each unique label is a vector element. + + >>> a = Counter() + >>> b = Counter() + >>> a['first'] = -2 + >>> a['second'] = 4 + >>> b['first'] = 3 + >>> b['second'] = 5 + >>> a['third'] = 1.5 + >>> a['fourth'] = 2.5 + >>> a * b + 14 + """ + sum = 0 + x = self + if len(x) > len(y): + x,y = y,x + for key in x: + if key not in y: + continue + sum += x[key] * y[key] + return sum + + def __radd__(self, y): + """ + Adding another counter to a counter increments the current counter + by the values stored in the second counter. + + >>> a = Counter() + >>> b = Counter() + >>> a['first'] = -2 + >>> a['second'] = 4 + >>> b['first'] = 3 + >>> b['third'] = 1 + >>> a += b + >>> a['first'] + 1 + """ + for key, value in y.items(): + self[key] += value + + def __add__( self, y ): + """ + Adding two counters gives a counter with the union of all keys and + counts of the second added to counts of the first. + + >>> a = Counter() + >>> b = Counter() + >>> a['first'] = -2 + >>> a['second'] = 4 + >>> b['first'] = 3 + >>> b['third'] = 1 + >>> (a + b)['first'] + 1 + """ + addend = Counter() + for key in self: + if key in y: + addend[key] = self[key] + y[key] + else: + addend[key] = self[key] + for key in y: + if key in self: + continue + addend[key] = y[key] + return addend + + def __sub__( self, y ): + """ + Subtracting a counter from another gives a counter with the union of all keys and + counts of the second subtracted from counts of the first. + + >>> a = Counter() + >>> b = Counter() + >>> a['first'] = -2 + >>> a['second'] = 4 + >>> b['first'] = 3 + >>> b['third'] = 1 + >>> (a - b)['first'] + -5 + """ + addend = Counter() + for key in self: + if key in y: + addend[key] = self[key] - y[key] + else: + addend[key] = self[key] + for key in y: + if key in self: + continue + addend[key] = -1 * y[key] + return addend + +def raiseNotDefined(): + fileName = inspect.stack()[1][1] + line = inspect.stack()[1][2] + method = inspect.stack()[1][3] + + print "*** Method not implemented: %s at line %s of %s" % (method, line, fileName) + sys.exit(1) + +def normalize(vectorOrCounter): + """ + normalize a vector or counter by dividing each value by the sum of all values + """ + normalizedCounter = Counter() + if type(vectorOrCounter) == type(normalizedCounter): + counter = vectorOrCounter + total = float(counter.totalCount()) + if total == 0: return counter + for key in counter.keys(): + value = counter[key] + normalizedCounter[key] = value / total + return normalizedCounter + else: + vector = vectorOrCounter + s = float(sum(vector)) + if s == 0: return vector + return [el / s for el in vector] + +def nSample(distribution, values, n): + if sum(distribution) != 1: + distribution = normalize(distribution) + rand = [random.random() for i in range(n)] + rand.sort() + samples = [] + samplePos, distPos, cdf = 0,0, distribution[0] + while samplePos < n: + if rand[samplePos] < cdf: + samplePos += 1 + samples.append(values[distPos]) + else: + distPos += 1 + cdf += distribution[distPos] + return samples + +def sample(distribution, values = None): + if type(distribution) == Counter: + items = sorted(distribution.items()) + distribution = [i[1] for i in items] + values = [i[0] for i in items] + if sum(distribution) != 1: + distribution = normalize(distribution) + choice = random.random() + i, total= 0, distribution[0] + while choice > total: + i += 1 + total += distribution[i] + return values[i] + +def sampleFromCounter(ctr): + items = sorted(ctr.items()) + return sample([v for k,v in items], [k for k,v in items]) + +def getProbability(value, distribution, values): + """ + Gives the probability of a value under a discrete distribution + defined by (distributions, values). + """ + total = 0.0 + for prob, val in zip(distribution, values): + if val == value: + total += prob + return total + +def flipCoin( p ): + r = random.random() + return r < p + +def chooseFromDistribution( distribution ): + "Takes either a counter or a list of (prob, key) pairs and samples" + if type(distribution) == dict or type(distribution) == Counter: + return sample(distribution) + r = random.random() + base = 0.0 + for prob, element in distribution: + base += prob + if r <= base: return element + +def nearestPoint( pos ): + """ + Finds the nearest grid point to a position (discretizes). + """ + ( current_row, current_col ) = pos + + grid_row = int( current_row + 0.5 ) + grid_col = int( current_col + 0.5 ) + return ( grid_row, grid_col ) + +def sign( x ): + """ + Returns 1 or -1 depending on the sign of x + """ + if( x >= 0 ): + return 1 + else: + return -1 + +def arrayInvert(array): + """ + Inverts a matrix stored as a list of lists. + """ + result = [[] for i in array] + for outer in array: + for inner in range(len(outer)): + result[inner].append(outer[inner]) + return result + +def matrixAsList( matrix, value = True ): + """ + Turns a matrix into a list of coordinates matching the specified value + """ + rows, cols = len( matrix ), len( matrix[0] ) + cells = [] + for row in range( rows ): + for col in range( cols ): + if matrix[row][col] == value: + cells.append( ( row, col ) ) + return cells + +def lookup(name, namespace): + """ + Get a method or class from any imported module from its name. + Usage: lookup(functionName, globals()) + """ + dots = name.count('.') + if dots > 0: + moduleName, objName = '.'.join(name.split('.')[:-1]), name.split('.')[-1] + module = __import__(moduleName) + return getattr(module, objName) + else: + modules = [obj for obj in namespace.values() if str(type(obj)) == ""] + options = [getattr(module, name) for module in modules if name in dir(module)] + options += [obj[1] for obj in namespace.items() if obj[0] == name ] + if len(options) == 1: return options[0] + if len(options) > 1: raise Exception, 'Name conflict for %s' + raise Exception, '%s not found as a method or class' % name + +def pause(): + """ + Pauses the output stream awaiting user feedback. + """ + print "" + raw_input() + + +# code to handle timeouts +# +# FIXME +# NOTE: TimeoutFuncton is NOT reentrant. Later timeouts will silently +# disable earlier timeouts. Could be solved by maintaining a global list +# of active time outs. Currently, questions which have test cases calling +# this have all student code so wrapped. +# +import signal +import time +class TimeoutFunctionException(Exception): + """Exception to raise on a timeout""" + pass + + +class TimeoutFunction: + def __init__(self, function, timeout): + self.timeout = timeout + self.function = function + + def handle_timeout(self, signum, frame): + raise TimeoutFunctionException() + + def __call__(self, *args, **keyArgs): + # If we have SIGALRM signal, use it to cause an exception if and + # when this function runs too long. Otherwise check the time taken + # after the method has returned, and throw an exception then. + if hasattr(signal, 'SIGALRM'): + old = signal.signal(signal.SIGALRM, self.handle_timeout) + signal.alarm(self.timeout) + try: + result = self.function(*args, **keyArgs) + finally: + signal.signal(signal.SIGALRM, old) + signal.alarm(0) + else: + startTime = time.time() + result = self.function(*args, **keyArgs) + timeElapsed = time.time() - startTime + if timeElapsed >= self.timeout: + self.handle_timeout(None, None) + return result + + + +_ORIGINAL_STDOUT = None +_ORIGINAL_STDERR = None +_MUTED = False + +class WritableNull: + def write(self, string): + pass + +def mutePrint(): + global _ORIGINAL_STDOUT, _ORIGINAL_STDERR, _MUTED + if _MUTED: + return + _MUTED = True + + _ORIGINAL_STDOUT = sys.stdout + #_ORIGINAL_STDERR = sys.stderr + sys.stdout = WritableNull() + #sys.stderr = WritableNull() + +def unmutePrint(): + global _ORIGINAL_STDOUT, _ORIGINAL_STDERR, _MUTED + if not _MUTED: + return + _MUTED = False + + sys.stdout = _ORIGINAL_STDOUT + #sys.stderr = _ORIGINAL_STDERR + diff --git a/search/util.pyc b/search/util.pyc new file mode 100644 index 0000000..6f22206 Binary files /dev/null and b/search/util.pyc differ