# search.py # --------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). """ In search.py, you will implement generic search algorithms which are called by Pacman agents (in searchAgents.py). """ import util class SearchProblem: """ This class outlines the structure of a search problem, but doesn't implement any of the methods (in object-oriented terminology: an abstract class). You do not need to change anything in this class, ever. """ def getStartState(self): """ Returns the start state for the search problem. """ util.raiseNotDefined() def isGoalState(self, state): """ state: Search state Returns True if and only if the state is a valid goal state. """ util.raiseNotDefined() def getSuccessors(self, state): """ state: Search state For a given state, this should return a list of triples, (successor, action, stepCost), where 'successor' is a successor to the current state, 'action' is the action required to get there, and 'stepCost' is the incremental cost of expanding to that successor. """ util.raiseNotDefined() def getCostOfActions(self, actions): """ actions: A list of actions to take This method returns the total cost of a particular sequence of actions. The sequence must be composed of legal moves. """ util.raiseNotDefined() def tinyMazeSearch(problem): """ Returns a sequence of moves that solves tinyMaze. For any other maze, the sequence of moves will be incorrect, so only use this for tinyMaze. """ from game import Directions s = Directions.SOUTH w = Directions.WEST return [s, s, w, s, w, w, s, w] def depthFirstSearch(problem): """ Search the deepest nodes in the search tree first. Your search algorithm needs to return a list of actions that reaches the goal. Make sure to implement a graph search algorithm. To get started, you might want to try some of these simple commands to understand the search problem that is being passed in: print "Start:", problem.getStartState() print "Is the start a goal?", problem.isGoalState(problem.getStartState()) print "Start's successors:", problem.getSuccessors(problem.getStartState()) """ "*** YOUR CODE HERE ***" visited_node = [] myStack= util.Stack() actions = [] s = problem.getStartState() if problem.isGoalState(s): return actions myStack.push((s, actions)) while not myStack.isEmpty(): state = myStack.pop() if state[0] in visited_node: continue visited_node.append(state[0]) actions = state[1] if (problem.isGoalState(state[0])): return actions for successor in problem.getSuccessors(state[0]): child_state = successor[0] action = successor[1] sub_action = list(actions) if not child_state in visited_node: sub_action.append(action) myStack.push((child_state, sub_action)) return actions util.raiseNotDefined() def breadthFirstSearch(problem): """Search the shallowest nodes in the search tree first.""" "*** YOUR CODE HERE ***" visited_node = [] myQueue = util.Queue() actions = [] s = problem.getStartState() if problem.isGoalState(s): return actions myQueue.push((s, actions)) while not myQueue.isEmpty(): state = myQueue.pop() if state[0] in visited_node: continue visited_node.append(state[0]) actions = state[1] if (problem.isGoalState(state[0])): return actions for successor in problem.getSuccessors(state[0]): child_state = successor[0] action = successor[1] sub_action = list(actions) if not child_state in visited_node: sub_action.append(action) myQueue.push((child_state, sub_action)) return actions util.raiseNotDefined() def uniformCostSearch(problem): """Search the node of least total cost first.""" "*** YOUR CODE HERE ***" visited_node = [] mypriorityQueue = util.PriorityQueue() actions = [] s = problem.getStartState() if problem.isGoalState(s): return actions mypriorityQueue.push((s, actions), 0) while not mypriorityQueue.isEmpty(): state = mypriorityQueue.pop() if state[0] in visited_node: continue visited_node.append(state[0]) actions = state[1] if (problem.isGoalState(state[0])): return actions for successor in problem.getSuccessors(state[0]): child_state = successor[0] action = successor[1] sub_action = list(actions) if not child_state in visited_node: sub_action.append(action) mypriorityQueue.push((child_state, sub_action), problem.getCostOfActions(sub_action)) return actions util.raiseNotDefined() def nullHeuristic(state, problem=None): """ A heuristic function estimates the cost from the current state to the nearest goal in the provided SearchProblem. This heuristic is trivial. """ return 0 def aStarSearch(problem, heuristic=nullHeuristic): """Search the node that has the lowest combined cost and heuristic first.""" "*** YOUR CODE HERE ***" visited_node = [] mypriorityQueue = util.PriorityQueue() actions = [] s = problem.getStartState() if problem.isGoalState(s): return actions mypriorityQueue.push((s, actions), 0) while not mypriorityQueue.isEmpty(): state = mypriorityQueue.pop() if state[0] in visited_node: continue visited_node.append(state[0]) actions = state[1] if (problem.isGoalState(state[0])): return actions for successor in problem.getSuccessors(state[0]): child_state = successor[0] action = successor[1] sub_action = list(actions) if not child_state in visited_node: sub_action.append(action) mypriorityQueue.push((child_state, sub_action),heuristic(child_state, problem) + problem.getCostOfActions(sub_action)) return actions util.raiseNotDefined() # Abbreviations bfs = breadthFirstSearch dfs = depthFirstSearch astar = aStarSearch ucs = uniformCostSearch