You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

822 lines
31 KiB

# searchTestClasses.py
# --------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
import re
import testClasses
import textwrap
# import project specific code
import layout
import pacman
from search import SearchProblem
# helper function for printing solutions in solution files
def wrap_solution(solution):
if type(solution) == type([]):
return '\n'.join(textwrap.wrap(' '.join(solution)))
else:
return str(solution)
def followAction(state, action, problem):
for successor1, action1, cost1 in problem.getSuccessors(state):
if action == action1: return successor1
return None
def followPath(path, problem):
state = problem.getStartState()
states = [state]
for action in path:
state = followAction(state, action, problem)
states.append(state)
return states
def checkSolution(problem, path):
state = problem.getStartState()
for action in path:
state = followAction(state, action, problem)
return problem.isGoalState(state)
# Search problem on a plain graph
class GraphSearch(SearchProblem):
# Read in the state graph; define start/end states, edges and costs
def __init__(self, graph_text):
self.expanded_states = []
lines = graph_text.split('\n')
r = re.match('start_state:(.*)', lines[0])
if r == None:
print "Broken graph:"
print '"""%s"""' % graph_text
raise Exception("GraphSearch graph specification start_state not found or incorrect on line:" + l)
self.start_state = r.group(1).strip()
r = re.match('goal_states:(.*)', lines[1])
if r == None:
print "Broken graph:"
print '"""%s"""' % graph_text
raise Exception("GraphSearch graph specification goal_states not found or incorrect on line:" + l)
goals = r.group(1).split()
self.goals = map(str.strip, goals)
self.successors = {}
all_states = set()
self.orderedSuccessorTuples = []
for l in lines[2:]:
if len(l.split()) == 3:
start, action, next_state = l.split()
cost = 1
elif len(l.split()) == 4:
start, action, next_state, cost = l.split()
else:
print "Broken graph:"
print '"""%s"""' % graph_text
raise Exception("Invalid line in GraphSearch graph specification on line:" + l)
cost = float(cost)
self.orderedSuccessorTuples.append((start, action, next_state, cost))
all_states.add(start)
all_states.add(next_state)
if start not in self.successors:
self.successors[start] = []
self.successors[start].append((next_state, action, cost))
for s in all_states:
if s not in self.successors:
self.successors[s] = []
# Get start state
def getStartState(self):
return self.start_state
# Check if a state is a goal state
def isGoalState(self, state):
return state in self.goals
# Get all successors of a state
def getSuccessors(self, state):
self.expanded_states.append(state)
return list(self.successors[state])
# Calculate total cost of a sequence of actions
def getCostOfActions(self, actions):
total_cost = 0
state = self.start_state
for a in actions:
successors = self.successors[state]
match = False
for (next_state, action, cost) in successors:
if a == action:
state = next_state
total_cost += cost
match = True
if not match:
print 'invalid action sequence'
sys.exit(1)
return total_cost
# Return a list of all states on which 'getSuccessors' was called
def getExpandedStates(self):
return self.expanded_states
def __str__(self):
print self.successors
edges = ["%s %s %s %s" % t for t in self.orderedSuccessorTuples]
return \
"""start_state: %s
goal_states: %s
%s""" % (self.start_state, " ".join(self.goals), "\n".join(edges))
def parseHeuristic(heuristicText):
heuristic = {}
for line in heuristicText.split('\n'):
tokens = line.split()
if len(tokens) != 2:
print "Broken heuristic:"
print '"""%s"""' % graph_text
raise Exception("GraphSearch heuristic specification broken:" + l)
state, h = tokens
heuristic[state] = float(h)
def graphHeuristic(state, problem=None):
if state in heuristic:
return heuristic[state]
else:
pp = pprint.PrettyPrinter(indent=4)
print "Heuristic:"
pp.pprint(heuristic)
raise Exception("Graph heuristic called with invalid state: " + str(state))
return graphHeuristic
class GraphSearchTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(GraphSearchTest, self).__init__(question, testDict)
self.graph_text = testDict['graph']
self.alg = testDict['algorithm']
self.diagram = testDict['diagram']
self.exactExpansionOrder = testDict.get('exactExpansionOrder', 'True').lower() == "true"
if 'heuristic' in testDict:
self.heuristic = parseHeuristic(testDict['heuristic'])
else:
self.heuristic = None
# Note that the return type of this function is a tripple:
# (solution, expanded states, error message)
def getSolInfo(self, search):
alg = getattr(search, self.alg)
problem = GraphSearch(self.graph_text)
if self.heuristic != None:
solution = alg(problem, self.heuristic)
else:
solution = alg(problem)
if type(solution) != type([]):
return None, None, 'The result of %s must be a list. (Instead, it is %s)' % (self.alg, type(solution))
return solution, problem.getExpandedStates(), None
# Run student code. If an error message is returned, print error and return false.
# If a good solution is returned, printn the solution and return true; otherwise,
# print both the correct and student's solution and return false.
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
gold_solution = [str.split(solutionDict['solution']), str.split(solutionDict['rev_solution'])]
gold_expanded_states = [str.split(solutionDict['expanded_states']), str.split(solutionDict['rev_expanded_states'])]
solution, expanded_states, error = self.getSolInfo(search)
if error != None:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('\t%s' % error)
return False
if solution in gold_solution and (not self.exactExpansionOrder or expanded_states in gold_expanded_states):
grades.addMessage('PASS: %s' % self.path)
grades.addMessage('\tsolution:\t\t%s' % solution)
grades.addMessage('\texpanded_states:\t%s' % expanded_states)
return True
else:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('\tgraph:')
for line in self.diagram.split('\n'):
grades.addMessage('\t %s' % (line,))
grades.addMessage('\tstudent solution:\t\t%s' % solution)
grades.addMessage('\tstudent expanded_states:\t%s' % expanded_states)
grades.addMessage('')
grades.addMessage('\tcorrect solution:\t\t%s' % gold_solution[0])
grades.addMessage('\tcorrect expanded_states:\t%s' % gold_expanded_states[0])
grades.addMessage('\tcorrect rev_solution:\t\t%s' % gold_solution[1])
grades.addMessage('\tcorrect rev_expanded_states:\t%s' % gold_expanded_states[1])
return False
def writeSolution(self, moduleDict, filePath):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
handle.write('# This solution is designed to support both right-to-left\n')
handle.write('# and left-to-right implementations.\n')
# write forward solution
solution, expanded_states, error = self.getSolInfo(search)
if error != None: raise Exception("Error in solution code: %s" % error)
handle.write('solution: "%s"\n' % ' '.join(solution))
handle.write('expanded_states: "%s"\n' % ' '.join(expanded_states))
# reverse and write backwards solution
search.REVERSE_PUSH = not search.REVERSE_PUSH
solution, expanded_states, error = self.getSolInfo(search)
if error != None: raise Exception("Error in solution code: %s" % error)
handle.write('rev_solution: "%s"\n' % ' '.join(solution))
handle.write('rev_expanded_states: "%s"\n' % ' '.join(expanded_states))
# clean up
search.REVERSE_PUSH = not search.REVERSE_PUSH
handle.close()
return True
class PacmanSearchTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(PacmanSearchTest, self).__init__(question, testDict)
self.layout_text = testDict['layout']
self.alg = testDict['algorithm']
self.layoutName = testDict['layoutName']
# TODO: sensible to have defaults like this?
self.leewayFactor = float(testDict.get('leewayFactor', '1'))
self.costFn = eval(testDict.get('costFn', 'None'))
self.searchProblemClassName = testDict.get('searchProblemClass', 'PositionSearchProblem')
self.heuristicName = testDict.get('heuristic', None)
def getSolInfo(self, search, searchAgents):
alg = getattr(search, self.alg)
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
start_state = pacman.GameState()
start_state.initialize(lay, 0)
problemClass = getattr(searchAgents, self.searchProblemClassName)
problemOptions = {}
if self.costFn != None:
problemOptions['costFn'] = self.costFn
problem = problemClass(start_state, **problemOptions)
heuristic = getattr(searchAgents, self.heuristicName) if self.heuristicName != None else None
if heuristic != None:
solution = alg(problem, heuristic)
else:
solution = alg(problem)
if type(solution) != type([]):
return None, None, 'The result of %s must be a list. (Instead, it is %s)' % (self.alg, type(solution))
from game import Directions
dirs = Directions.LEFT.keys()
if [el in dirs for el in solution].count(False) != 0:
return None, None, 'Output of %s must be a list of actions from game.Directions' % self.alg
expanded = problem._expanded
return solution, expanded, None
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
gold_solution = [str.split(solutionDict['solution']), str.split(solutionDict['rev_solution'])]
gold_expanded = max(int(solutionDict['expanded_nodes']), int(solutionDict['rev_expanded_nodes']))
solution, expanded, error = self.getSolInfo(search, searchAgents)
if error != None:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('%s' % error)
return False
# FIXME: do we want to standardize test output format?
if solution not in gold_solution:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('Solution not correct.')
grades.addMessage('\tstudent solution length: %s' % len(solution))
grades.addMessage('\tstudent solution:\n%s' % wrap_solution(solution))
grades.addMessage('')
grades.addMessage('\tcorrect solution length: %s' % len(gold_solution[0]))
grades.addMessage('\tcorrect (reversed) solution length: %s' % len(gold_solution[1]))
grades.addMessage('\tcorrect solution:\n%s' % wrap_solution(gold_solution[0]))
grades.addMessage('\tcorrect (reversed) solution:\n%s' % wrap_solution(gold_solution[1]))
return False
if expanded > self.leewayFactor * gold_expanded and expanded > gold_expanded + 1:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('Too many node expanded; are you expanding nodes twice?')
grades.addMessage('\tstudent nodes expanded: %s' % expanded)
grades.addMessage('')
grades.addMessage('\tcorrect nodes expanded: %s (leewayFactor %s)' % (gold_expanded, self.leewayFactor))
return False
grades.addMessage('PASS: %s' % self.path)
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
grades.addMessage('\tsolution length: %s' % len(solution))
grades.addMessage('\tnodes expanded:\t\t%s' % expanded)
return True
def writeSolution(self, moduleDict, filePath):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
handle.write('# This solution is designed to support both right-to-left\n')
handle.write('# and left-to-right implementations.\n')
handle.write('# Number of nodes expanded must be with a factor of %s of the numbers below.\n' % self.leewayFactor)
# write forward solution
solution, expanded, error = self.getSolInfo(search, searchAgents)
if error != None: raise Exception("Error in solution code: %s" % error)
handle.write('solution: """\n%s\n"""\n' % wrap_solution(solution))
handle.write('expanded_nodes: "%s"\n' % expanded)
# write backward solution
search.REVERSE_PUSH = not search.REVERSE_PUSH
solution, expanded, error = self.getSolInfo(search, searchAgents)
if error != None: raise Exception("Error in solution code: %s" % error)
handle.write('rev_solution: """\n%s\n"""\n' % wrap_solution(solution))
handle.write('rev_expanded_nodes: "%s"\n' % expanded)
# clean up
search.REVERSE_PUSH = not search.REVERSE_PUSH
handle.close()
return True
from game import Actions
def getStatesFromPath(start, path):
"Returns the list of states visited along the path"
vis = [start]
curr = start
for a in path:
x,y = curr
dx, dy = Actions.directionToVector(a)
curr = (int(x + dx), int(y + dy))
vis.append(curr)
return vis
class CornerProblemTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(CornerProblemTest, self).__init__(question, testDict)
self.layoutText = testDict['layout']
self.layoutName = testDict['layoutName']
def solution(self, search, searchAgents):
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
gameState = pacman.GameState()
gameState.initialize(lay, 0)
problem = searchAgents.CornersProblem(gameState)
path = search.bfs(problem)
gameState = pacman.GameState()
gameState.initialize(lay, 0)
visited = getStatesFromPath(gameState.getPacmanPosition(), path)
top, right = gameState.getWalls().height-2, gameState.getWalls().width-2
missedCorners = [p for p in ((1,1), (1,top), (right, 1), (right, top)) if p not in visited]
return path, missedCorners
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
gold_length = int(solutionDict['solution_length'])
solution, missedCorners = self.solution(search, searchAgents)
if type(solution) != type([]):
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('The result must be a list. (Instead, it is %s)' % type(solution))
return False
if len(missedCorners) != 0:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('Corners missed: %s' % missedCorners)
return False
if len(solution) != gold_length:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('Optimal solution not found.')
grades.addMessage('\tstudent solution length:\n%s' % len(solution))
grades.addMessage('')
grades.addMessage('\tcorrect solution length:\n%s' % gold_length)
return False
grades.addMessage('PASS: %s' % self.path)
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
grades.addMessage('\tsolution length:\t\t%s' % len(solution))
return True
def writeSolution(self, moduleDict, filePath):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
print "Solving problem", self.layoutName
print self.layoutText
path, _ = self.solution(search, searchAgents)
length = len(path)
print "Problem solved"
handle.write('solution_length: "%s"\n' % length)
handle.close()
# template = """class: "HeuristicTest"
#
# heuristic: "foodHeuristic"
# searchProblemClass: "FoodSearchProblem"
# layoutName: "Test %s"
# layout: \"\"\"
# %s
# \"\"\"
# """
#
# for i, (_, _, l) in enumerate(doneTests + foodTests):
# f = open("food_heuristic_%s.test" % (i+1), "w")
# f.write(template % (i+1, "\n".join(l)))
# f.close()
class HeuristicTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(HeuristicTest, self).__init__(question, testDict)
self.layoutText = testDict['layout']
self.layoutName = testDict['layoutName']
self.searchProblemClassName = testDict['searchProblemClass']
self.heuristicName = testDict['heuristic']
def setupProblem(self, searchAgents):
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
gameState = pacman.GameState()
gameState.initialize(lay, 0)
problemClass = getattr(searchAgents, self.searchProblemClassName)
problem = problemClass(gameState)
state = problem.getStartState()
heuristic = getattr(searchAgents, self.heuristicName)
return problem, state, heuristic
def checkHeuristic(self, heuristic, problem, state, solutionCost):
h0 = heuristic(state, problem)
if solutionCost == 0:
if h0 == 0:
return True, ''
else:
return False, 'Heuristic failed H(goal) == 0 test'
if h0 < 0:
return False, 'Heuristic failed H >= 0 test'
if not h0 > 0:
return False, 'Heuristic failed non-triviality test'
if not h0 <= solutionCost:
return False, 'Heuristic failed admissibility test'
for succ, action, stepCost in problem.getSuccessors(state):
h1 = heuristic(succ, problem)
if h1 < 0: return False, 'Heuristic failed H >= 0 test'
if h0 - h1 > stepCost: return False, 'Heuristic failed consistency test'
return True, ''
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
solutionCost = int(solutionDict['solution_cost'])
problem, state, heuristic = self.setupProblem(searchAgents)
passed, message = self.checkHeuristic(heuristic, problem, state, solutionCost)
if not passed:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('%s' % message)
return False
else:
grades.addMessage('PASS: %s' % self.path)
return True
def writeSolution(self, moduleDict, filePath):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
print "Solving problem", self.layoutName, self.heuristicName
print self.layoutText
problem, _, heuristic = self.setupProblem(searchAgents)
path = search.astar(problem, heuristic)
cost = problem.getCostOfActions(path)
print "Problem solved"
handle.write('solution_cost: "%s"\n' % cost)
handle.close()
return True
class HeuristicGrade(testClasses.TestCase):
def __init__(self, question, testDict):
super(HeuristicGrade, self).__init__(question, testDict)
self.layoutText = testDict['layout']
self.layoutName = testDict['layoutName']
self.searchProblemClassName = testDict['searchProblemClass']
self.heuristicName = testDict['heuristic']
self.basePoints = int(testDict['basePoints'])
self.thresholds = [int(t) for t in testDict['gradingThresholds'].split()]
def setupProblem(self, searchAgents):
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
gameState = pacman.GameState()
gameState.initialize(lay, 0)
problemClass = getattr(searchAgents, self.searchProblemClassName)
problem = problemClass(gameState)
state = problem.getStartState()
heuristic = getattr(searchAgents, self.heuristicName)
return problem, state, heuristic
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
problem, _, heuristic = self.setupProblem(searchAgents)
path = search.astar(problem, heuristic)
expanded = problem._expanded
if not checkSolution(problem, path):
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('\tReturned path is not a solution.')
grades.addMessage('\tpath returned by astar: %s' % expanded)
return False
grades.addPoints(self.basePoints)
points = 0
for threshold in self.thresholds:
if expanded <= threshold:
points += 1
grades.addPoints(points)
if points >= len(self.thresholds):
grades.addMessage('PASS: %s' % self.path)
else:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('\texpanded nodes: %s' % expanded)
grades.addMessage('\tthresholds: %s' % self.thresholds)
return True
def writeSolution(self, moduleDict, filePath):
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
handle.write('# File intentionally blank.\n')
handle.close()
return True
# template = """class: "ClosestDotTest"
#
# layoutName: "Test %s"
# layout: \"\"\"
# %s
# \"\"\"
# """
#
# for i, (_, _, l) in enumerate(foodTests):
# f = open("closest_dot_%s.test" % (i+1), "w")
# f.write(template % (i+1, "\n".join(l)))
# f.close()
class ClosestDotTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(ClosestDotTest, self).__init__(question, testDict)
self.layoutText = testDict['layout']
self.layoutName = testDict['layoutName']
def solution(self, searchAgents):
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
gameState = pacman.GameState()
gameState.initialize(lay, 0)
path = searchAgents.ClosestDotSearchAgent().findPathToClosestDot(gameState)
return path
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
gold_length = int(solutionDict['solution_length'])
solution = self.solution(searchAgents)
if type(solution) != type([]):
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('\tThe result must be a list. (Instead, it is %s)' % type(solution))
return False
if len(solution) != gold_length:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('Closest dot not found.')
grades.addMessage('\tstudent solution length:\n%s' % len(solution))
grades.addMessage('')
grades.addMessage('\tcorrect solution length:\n%s' % gold_length)
return False
grades.addMessage('PASS: %s' % self.path)
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
grades.addMessage('\tsolution length:\t\t%s' % len(solution))
return True
def writeSolution(self, moduleDict, filePath):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
print "Solving problem", self.layoutName
print self.layoutText
length = len(self.solution(searchAgents))
print "Problem solved"
handle.write('solution_length: "%s"\n' % length)
handle.close()
return True
class CornerHeuristicSanity(testClasses.TestCase):
def __init__(self, question, testDict):
super(CornerHeuristicSanity, self).__init__(question, testDict)
self.layout_text = testDict['layout']
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
game_state = pacman.GameState()
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
game_state.initialize(lay, 0)
problem = searchAgents.CornersProblem(game_state)
start_state = problem.getStartState()
h0 = searchAgents.cornersHeuristic(start_state, problem)
succs = problem.getSuccessors(start_state)
# cornerConsistencyA
for succ in succs:
h1 = searchAgents.cornersHeuristic(succ[0], problem)
if h0 - h1 > 1:
grades.addMessage('FAIL: inconsistent heuristic')
return False
heuristic_cost = searchAgents.cornersHeuristic(start_state, problem)
true_cost = float(solutionDict['cost'])
# cornerNontrivial
if heuristic_cost == 0:
grades.addMessage('FAIL: must use non-trivial heuristic')
return False
# cornerAdmissible
if heuristic_cost > true_cost:
grades.addMessage('FAIL: Inadmissible heuristic')
return False
path = solutionDict['path'].split()
states = followPath(path, problem)
heuristics = []
for state in states:
heuristics.append(searchAgents.cornersHeuristic(state, problem))
for i in range(0, len(heuristics) - 1):
h0 = heuristics[i]
h1 = heuristics[i+1]
# cornerConsistencyB
if h0 - h1 > 1:
grades.addMessage('FAIL: inconsistent heuristic')
return False
# cornerPosH
if h0 < 0 or h1 <0:
grades.addMessage('FAIL: non-positive heuristic')
return False
# cornerGoalH
if heuristics[len(heuristics) - 1] != 0:
grades.addMessage('FAIL: heuristic non-zero at goal')
return False
grades.addMessage('PASS: heuristic value less than true cost at start state')
return True
def writeSolution(self, moduleDict, filePath):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
# write comment
handle = open(filePath, 'w')
handle.write('# In order for a heuristic to be admissible, the value\n')
handle.write('# of the heuristic must be less at each state than the\n')
handle.write('# true cost of the optimal path from that state to a goal.\n')
# solve problem and write solution
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
start_state = pacman.GameState()
start_state.initialize(lay, 0)
problem = searchAgents.CornersProblem(start_state)
solution = search.astar(problem, searchAgents.cornersHeuristic)
handle.write('cost: "%d"\n' % len(solution))
handle.write('path: """\n%s\n"""\n' % wrap_solution(solution))
handle.close()
return True
class CornerHeuristicPacman(testClasses.TestCase):
def __init__(self, question, testDict):
super(CornerHeuristicPacman, self).__init__(question, testDict)
self.layout_text = testDict['layout']
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
total = 0
true_cost = float(solutionDict['cost'])
thresholds = map(int, solutionDict['thresholds'].split())
game_state = pacman.GameState()
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
game_state.initialize(lay, 0)
problem = searchAgents.CornersProblem(game_state)
start_state = problem.getStartState()
if searchAgents.cornersHeuristic(start_state, problem) > true_cost:
grades.addMessage('FAIL: Inadmissible heuristic')
return False
path = search.astar(problem, searchAgents.cornersHeuristic)
print "path:", path
print "path length:", len(path)
cost = problem.getCostOfActions(path)
if cost > true_cost:
grades.addMessage('FAIL: Inconsistent heuristic')
return False
expanded = problem._expanded
points = 0
for threshold in thresholds:
if expanded <= threshold:
points += 1
grades.addPoints(points)
if points >= len(thresholds):
grades.addMessage('PASS: Heuristic resulted in expansion of %d nodes' % expanded)
else:
grades.addMessage('FAIL: Heuristic resulted in expansion of %d nodes' % expanded)
return True
def writeSolution(self, moduleDict, filePath):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
# write comment
handle = open(filePath, 'w')
handle.write('# This solution file specifies the length of the optimal path\n')
handle.write('# as well as the thresholds on number of nodes expanded to be\n')
handle.write('# used in scoring.\n')
# solve problem and write solution
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
start_state = pacman.GameState()
start_state.initialize(lay, 0)
problem = searchAgents.CornersProblem(start_state)
solution = search.astar(problem, searchAgents.cornersHeuristic)
handle.write('cost: "%d"\n' % len(solution))
handle.write('path: """\n%s\n"""\n' % wrap_solution(solution))
handle.write('thresholds: "2000 1600 1200"\n')
handle.close()
return True