You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
192 lines
6.7 KiB
192 lines
6.7 KiB
# search.py
|
|
# ---------
|
|
# Licensing Information: You are free to use or extend these projects for
|
|
# educational purposes provided that (1) you do not distribute or publish
|
|
# solutions, (2) you retain this notice, and (3) you provide clear
|
|
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
|
#
|
|
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
|
# The core projects and autograders were primarily created by John DeNero
|
|
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
|
# Student side autograding was added by Brad Miller, Nick Hay, and
|
|
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
|
|
|
|
|
"""
|
|
In search.py, you will implement generic search algorithms which are called by
|
|
Pacman agents (in searchAgents.py).
|
|
"""
|
|
|
|
import util
|
|
|
|
class SearchProblem:
|
|
"""
|
|
This class outlines the structure of a search problem, but doesn't implement
|
|
any of the methods (in object-oriented terminology: an abstract class).
|
|
|
|
You do not need to change anything in this class, ever.
|
|
"""
|
|
|
|
def getStartState(self):
|
|
"""
|
|
Returns the start state for the search problem.
|
|
"""
|
|
util.raiseNotDefined()
|
|
|
|
def isGoalState(self, state):
|
|
"""
|
|
state: Search state
|
|
|
|
Returns True if and only if the state is a valid goal state.
|
|
"""
|
|
util.raiseNotDefined()
|
|
|
|
def getSuccessors(self, state):
|
|
"""
|
|
state: Search state
|
|
|
|
For a given state, this should return a list of triples, (successor,
|
|
action, stepCost), where 'successor' is a successor to the current
|
|
state, 'action' is the action required to get there, and 'stepCost' is
|
|
the incremental cost of expanding to that successor.
|
|
"""
|
|
util.raiseNotDefined()
|
|
|
|
def getCostOfActions(self, actions):
|
|
"""
|
|
actions: A list of actions to take
|
|
|
|
This method returns the total cost of a particular sequence of actions.
|
|
The sequence must be composed of legal moves.
|
|
"""
|
|
util.raiseNotDefined()
|
|
|
|
|
|
def tinyMazeSearch(problem):
|
|
"""
|
|
Returns a sequence of moves that solves tinyMaze. For any other maze, the
|
|
sequence of moves will be incorrect, so only use this for tinyMaze.
|
|
"""
|
|
from game import Directions
|
|
s = Directions.SOUTH
|
|
w = Directions.WEST
|
|
return [s, s, w, s, w, w, s, w]
|
|
|
|
def depthFirstSearch(problem):
|
|
"""
|
|
Search the deepest nodes in the search tree first.
|
|
|
|
Your search algorithm needs to return a list of actions that reaches the
|
|
goal. Make sure to implement a graph search algorithm.
|
|
|
|
To get started, you might want to try some of these simple commands to
|
|
understand the search problem that is being passed in:
|
|
|
|
print "Start:", problem.getStartState()
|
|
print "Is the start a goal?", problem.isGoalState(problem.getStartState())
|
|
print "Start's successors:", problem.getSuccessors(problem.getStartState())
|
|
"""
|
|
"*** YOUR CODE HERE ***"
|
|
# start state
|
|
startState = problem.getStartState()
|
|
# have exit
|
|
exitState = []
|
|
#use stack to dfs
|
|
States = util.Stack()
|
|
States.push((startState,[]))
|
|
#repeat a circle to confirm if it is successful
|
|
while (not States.isEmpty()) and (not problem.isGoalState(startState)):
|
|
State,Actions = States.pop()
|
|
if State not in exitState:
|
|
exitState.append(State)
|
|
Successor = problem.getSuccessors(State)
|
|
for Node in Successor:
|
|
Coordinates = Node[0]
|
|
Direction = Node[1]
|
|
if not Coordinates in exitState:
|
|
States.push((Coordinates,Actions + [Direction]))
|
|
startState = Coordinates
|
|
return Actions + [Direction]
|
|
util.raiseNotDefined()
|
|
|
|
def breadthFirstSearch(problem):
|
|
"""Search the shallowest nodes in the search tree first."""
|
|
"*** YOUR CODE HERE ***"
|
|
startState = problem.getStartState()
|
|
exitState = []
|
|
States = util.Queue()
|
|
States.push((startState,[]))
|
|
while (not States.isEmpty()) and (not problem.isGoalState(startState)):
|
|
State, Actions = States.pop()
|
|
if State not in exitState:
|
|
Successor = problem.getSuccessors(State)
|
|
exitState.append(State)
|
|
for Node in Successor:
|
|
Coordinates = Node[0]
|
|
Direction = Node[1]
|
|
if Coordinates not in exitState:
|
|
States.push((Coordinates,Actions+[Direction]))
|
|
startState = Coordinates
|
|
return Actions + [Direction]
|
|
util.raiseNotDefined()
|
|
|
|
def uniformCostSearch(problem):
|
|
"""Search the node of least total cost first."""
|
|
"*** YOUR CODE HERE ***"
|
|
startState = problem.getStartState()
|
|
exitState = []
|
|
States = util.PriorityQueue()
|
|
States.push((startState, []),0)
|
|
while (not States.isEmpty()) and (not problem.isGoalState(startState)):
|
|
State, Actions = States.pop()
|
|
if State not in exitState:
|
|
Successor = problem.getSuccessors(State)
|
|
exitState.append(State)
|
|
for Node in Successor:
|
|
Coordinates = Node[0]
|
|
Direction = Node[1]
|
|
if Coordinates not in exitState:
|
|
newAction = Actions + [Direction]
|
|
States.push((Coordinates, newAction),problem.getCostOfActions(newAction))
|
|
startState = Coordinates
|
|
return Actions + [Direction]
|
|
util.raiseNotDefined()
|
|
|
|
def nullHeuristic(state, problem=None):
|
|
"""
|
|
A heuristic function estimates the cost from the current state to the nearest
|
|
goal in the provided SearchProblem. This heuristic is trivial.
|
|
"""
|
|
return 0
|
|
|
|
def aStarSearch(problem, heuristic=nullHeuristic):
|
|
"""Search the node that has the lowest combined cost and heuristic first."""
|
|
"*** YOUR CODE HERE ***"
|
|
startState = problem.getStartState()
|
|
exitState = []
|
|
States = util.PriorityQueue()
|
|
h_n = heuristic(startState,problem)
|
|
States.push((startState, []), h_n)
|
|
while (not States.isEmpty()) and (not problem.isGoalState(startState)):
|
|
State, Actions = States.pop()
|
|
if State not in exitState:
|
|
Successor = problem.getSuccessors(State)
|
|
exitState.append(State)
|
|
for Node in Successor:
|
|
Coordinates = Node[0]
|
|
Direction = Node[1]
|
|
if Coordinates not in exitState:
|
|
newAction = Actions + [Direction]
|
|
newCost = problem.getCostOfActions(newAction) + heuristic(Coordinates,problem)
|
|
States.push((Coordinates, newAction), newCost)
|
|
startState = Coordinates
|
|
return Actions + [Direction]
|
|
util.raiseNotDefined()
|
|
|
|
|
|
# Abbreviations
|
|
bfs = breadthFirstSearch
|
|
dfs = depthFirstSearch
|
|
astar = aStarSearch
|
|
ucs = uniformCostSearch
|