diff --git a/20407142-魏晨浩-计科2001.html b/20407142-魏晨浩-计科2001.html new file mode 100644 index 0000000..80a40a7 --- /dev/null +++ b/20407142-魏晨浩-计科2001.html @@ -0,0 +1,13938 @@ + + +
+ +# your code
+sum = 0
+temp = 1
+for i in range(1, 21):
+ temp *= i
+ sum += temp
+print(sum)
+# your code
+s = [9,7,8,3,2,1,55,6]
+# 元素个数
+print("链表元素个数为:", len(s))
+# 最大数
+print("最大数为:", max(s))
+# 最小数
+print("最小数为:", min(s))
+# 添加元素10
+s.append(10)
+print("添加元素10后的列表为:", s)
+# 删除元素55
+s.remove(55)
+print("删除元素55后的列表为:", s)
+TTTTTx
+TTTTxx
+TTTxxx
+TTxxxx
+Txxxxx
+
+# your code
+for i in range(1,6):
+ print('T'*(6-i) + 'x'*i)
+# your code
+def add(a, b):
+ return a + b
+
+def substract(a, b):
+ return a - b
+
+def multiply(a, b):
+ return a * b
+
+def divide(a, b):
+ return a / b
+
+print("请选择功能:")
+print("1. 加法")
+print("2. 减法")
+print("3. 乘法")
+print("4. 除法")
+
+choice = input("请输入功能对应的数字:")
+
+num1 = float(input("请输入第一个数字:"))
+num2 = float(input("请输入第二个数字:"))
+
+if choice == '1':
+ print(num1, "+", num2, "=", add(num1, num2))
+elif choice == '2':
+ print(num1, "-", num2, "=", substract(num1, num2))
+elif choice == '3':
+ print(num1, "*", num2, "=", multiply(num1, num2))
+elif choice == '4':
+ print(num1, "/", num2, "=", divide(num1, num2))
+else:
+ print("输入有误,请输入1-4中的一个数字。")
+# your code
+class Student:
+ def __init__(self, name, age, course):
+ self.name = name
+ self.age = age
+ self.course = course
+
+ def get_name(self):
+ return self.name
+
+ def get_age(self):
+ return self.age
+
+ def get_course(self):
+ return max(self.course)
+
+st = Student('zhangming', 20, [69, 88, 100])
+print('姓名:', st.get_name())
+print('年龄:', st.get_age())
+print('最高分数:', st.get_course())
+| X | +Y | +X | +Y | +
|---|---|---|---|
| -3.00 | +4 | +0.15 | +255 | +
| -2.50 | +12 | +0.75 | +170 | +
| -1.75 | +50 | +1.25 | +100 | +
| -1.15 | +120 | +1.85 | +20 | +
| -0.50 | +205 | +2.45 | +14 | +
# your code
+import matplotlib.pyplot as plt
+
+x1 = [-3.00, -2.50, -1.75, -1.15, -0.50]
+y1 = [4, 12, 50, 120, 205]
+x2 = [0.15, 0.75, 1.25, 1.85, 2.45]
+y2 = [255, 170, 100, 20, 14]
+plt.bar(x1, y1, width=0.3, color='orange')
+plt.bar(x2, y2, width=-0.3, color='orange')
+plt.show()
+注:训练集:测试集=8:2,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果打印出各个回归的w和b系数即可。
+| 序号 | +X1 | +X2 | +X3 | +X4 | +Y | +
|---|---|---|---|---|---|
| 1 | +7 | +26 | +6 | +60 | +78.5 | +
| 2 | +1 | +29 | +15 | +52 | +74.3 | +
| 3 | +11 | +56 | +8 | +20 | +104.3 | +
| 4 | +11 | +31 | +8 | +47 | +87.6 | +
| 5 | +7 | +52 | +6 | +33 | +95.9 | +
| 6 | +11 | +55 | +9 | +22 | +109.2 | +
| 7 | +3 | +71 | +17 | +6 | +102.7 | +
| 8 | +1 | +31 | +22 | +44 | +72.5 | +
| 9 | +2 | +54 | +18 | +22 | +93.1 | +
| 10 | +21 | +47 | +4 | +26 | +115.9 | +
| 11 | +1 | +40 | +23 | +34 | +83.8 | +
| 12 | +11 | +66 | +9 | +12 | +113.3 | +
| 13 | +10 | +68 | +8 | +12 | +109.4 | +
# your code
+import pandas as pd
+from sklearn.model_selection import train_test_split
+from sklearn.linear_model import LinearRegression, Ridge, Lasso
+
+# 读取数据
+data = pd.DataFrame({
+'X1': [7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10],
+'X2': [26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68],
+'X3': [6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 8],
+'X4': [60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 12, 12],
+'Y': [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4]
+})
+
+# 划分训练集和测试集
+train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)
+
+# 线性回归
+lr = LinearRegression()
+lr.fit(train_data[['X1', 'X2', 'X3', 'X4']], train_data['Y'])
+print('线性回归:')
+print('w:', lr.coef_)
+print('b:', lr.intercept_)
+
+# 岭回归
+ridge = Ridge(alpha=1)
+ridge.fit(train_data[['X1', 'X2', 'X3', 'X4']], train_data['Y'])
+print('岭回归:')
+print('w:', ridge.coef_)
+print('b:', ridge.intercept_)
+
+# Lasso回归
+lasso = Lasso(alpha=1)
+lasso.fit(train_data[['X1', 'X2', 'X3', 'X4']], train_data['Y'])
+print('Lasso回归:')
+print('w:', lasso.coef_)
+print('b:', lasso.intercept_)
+注:训练集:测试集=1:1,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果输出你预测结果、实际结果以及模型得分三项。
+| 序号 | +年龄 | +收入 | +是否为学生 | +信誉 | +购买计算机 | +
|---|---|---|---|---|---|
| 1 | +<=30 | +高 | +否 | +中 | +否 | +
| 2 | +<=30 | +高 | +否 | +优 | +否 | +
| 3 | +31-40 | +高 | +否 | +中 | +是 | +
| 4 | +>40 | +中 | +否 | +中 | +是 | +
| 5 | +>40 | +低 | +是 | +中 | +是 | +
| 6 | +>40 | +低 | +是 | +优 | +否 | +
| 7 | +31-40 | +低 | +是 | +优 | +是 | +
| 8 | +<=30 | +中 | +否 | +中 | +否 | +
| 9 | +<=30 | +低 | +是 | +中 | +是 | +
| 10 | +>40 | +中 | +是 | +中 | +是 | +
| 11 | +<=30 | +中 | +是 | +优 | +是 | +
| 12 | +31-40 | +中 | +否 | +优 | +是 | +
| 13 | +31-40 | +高 | +是 | +中 | +是 | +
| 14 | +>40 | +中 | +否 | +优 | +否 | +
# your code
+import pandas as pd
+from sklearn.naive_bayes import GaussianNB
+from sklearn.model_selection import train_test_split
+from sklearn.metrics import accuracy_score
+
+
+
+# 定义数据
+data = {'年龄': ['<=30', '<=30', '31-40', '>40', '>40', '>40', '31-40', '<=30', '<=30', '>40', '<=30', '31-40', '31-40', '>40'],
+ '收入': ['高', '高', '高', '中', '低', '低', '低', '中', '低', '中', '中', '中', '高', '中'],
+ '是否为学生': ['否', '否', '否', '否', '是', '是', '是', '否', '是', '是', '是', '否', '是', '否'],
+ '信誉': ['中', '优', '中', '中', '中', '优', '优', '中', '中', '中', '优', '优', '中', '优'],
+ '购买计算机': [0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0]}
+data = pd.DataFrame(data)
+
+# 将特征和标签分开
+X = data.iloc[:, :-1]
+Y = data.iloc[:, -1]
+
+# 将字符型特征转换为数值型
+X = pd.get_dummies(X, columns=['年龄', '收入', '是否为学生', '信誉'])
+
+# 划分训练集和测试集
+x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.5, random_state=42)
+
+# 创建朴素贝叶斯分类器
+clf = GaussianNB()
+
+# 训练模型
+clf.fit(x_train, y_train)
+
+# 预测测试集
+y_pred = clf.predict(x_test)
+
+# 输出预测结果、实际结果和模型得分
+print('预测结果:', y_pred)
+print('实际结果:', y_test.values)
+print('模型得分:', accuracy_score(y_test, y_pred))
+
+