From d90f8509c68edd3b6bff4a6086127d3133354f65 Mon Sep 17 00:00:00 2001 From: pbfohkm98 <2797718402@qq.com> Date: Tue, 30 May 2023 20:21:28 +0800 Subject: [PATCH] ADD file via upload --- 20407140-王婧-计科2001班.html | 15513 +++++++++++++++++++++++++++ 1 file changed, 15513 insertions(+) create mode 100644 20407140-王婧-计科2001班.html diff --git a/20407140-王婧-计科2001班.html b/20407140-王婧-计科2001班.html new file mode 100644 index 0000000..1115b5b --- /dev/null +++ b/20407140-王婧-计科2001班.html @@ -0,0 +1,15513 @@ + + +
+ + +sum = 0
+factorial = 1
+for n in range(1, 21):
+ factorial *= n # 计算 n!
+ sum += factorial # 累加到总和中
+print(sum)
+
2561327494111820313 ++
s = [9, 7, 8, 3, 2, 1, 55, 6]
+count = len(s) # 元素个数
+max_num = max(s) # 最大数
+min_num = min(s) # 最小数
+print("元素个数为:", count)
+print("最大数为:", max_num)
+print("最小数为:", min_num)
+
+s.append(10) # 添加元素10
+s.remove(55) # 删除元素55
+print(s)
+
元素个数为: 8 +最大数为: 55 +最小数为: 1 +[9, 7, 8, 3, 2, 1, 6, 10] ++
TTTTTx
+TTTTxx
+TTTxxx
+TTxxxx
+Txxxxx
+
+for i in range(5): # 外层循环,控制每一行打印的字符
+ for j in range(5-i): # 内层循环,控制每一行上字符的个数
+ print("T", end="")
+ for k in range(i):
+ print("x", end="")
+ print() # 换行
+
TTTTT +TTTTx +TTTxx +TTxxx +Txxxx ++
def add(a, b):
+ return a + b
+
+def sub(a, b):
+ return a - b
+
+def mul(a, b):
+ return a * b
+
+def div(a, b):
+ if b != 0:
+ return a / b
+ else:
+ return "除数不能为0"
+
+print("请选择功能:")
+print("1. 加法")
+print("2. 减法")
+print("3. 乘法")
+print("4. 除法")
+
+choice = int(input("请输入选择:"))
+num1 = float(input("请输入第一个数字:"))
+num2 = float(input("请输入第二个数字:"))
+
+if choice == 1:
+ result = add(num1, num2)
+elif choice == 2:
+ result = sub(num1, num2)
+elif choice == 3:
+ result = mul(num1, num2)
+elif choice == 4:
+ result = div(num1, num2)
+else:
+ print("输入错误!")
+
+print("计算结果为:", result)
+
请选择功能: +1. 加法 +2. 减法 +3. 乘法 +4. 除法 +请输入选择:1 +请输入第一个数字:213 +请输入第二个数字:2 +计算结果为: 215.0 ++
class Student:
+ def __init__(self, name, age, course):
+ self.name = name
+ self.age = age
+ self.course = course
+
+ def get_name(self):
+ return self.name
+
+ def get_age(self):
+ return self.age
+
+ def get_course(self):
+ return max(self.course)
+
+st = Student('zhangming', 20, [69, 88, 100])
+print("学生姓名:", st.get_name())
+print("学生年龄:", st.get_age())
+print("最高分数:", st.get_course())
+
学生姓名: zhangming +学生年龄: 20 +最高分数: 100 ++
X | +Y | +X | +Y | +
---|---|---|---|
-3.00 | +4 | +0.15 | +255 | +
-2.50 | +12 | +0.75 | +170 | +
-1.75 | +50 | +1.25 | +100 | +
-1.15 | +120 | +1.85 | +20 | +
-0.50 | +205 | +2.45 | +14 | +
import matplotlib.pyplot as plt
+
+# 定义 x, y 数组
+x = [-3.00, -2.50, -1.75, -1.15, -0.50, 0.15, 0.75, 1.25, 1.85, 2.45]
+y = [4, 12, 50, 120, 205, 255, 170, 100, 20, 14]
+
+# 设置标题和横纵轴标签
+plt.title("Data Plot")
+plt.xlabel("X")
+plt.ylabel("Y")
+
+# 绘制柱状图
+plt.bar(x, y, width=0.1, align="center")
+
+# 显示图表
+plt.show()
+
注:训练集:测试集=8:2,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果打印出各个回归的w和b系数即可。
+序号 | +X1 | +X2 | +X3 | +X4 | +Y | +
---|---|---|---|---|---|
1 | +7 | +26 | +6 | +60 | +78.5 | +
2 | +1 | +29 | +15 | +52 | +74.3 | +
3 | +11 | +56 | +8 | +20 | +104.3 | +
4 | +11 | +31 | +8 | +47 | +87.6 | +
5 | +7 | +52 | +6 | +33 | +95.9 | +
6 | +11 | +55 | +9 | +22 | +109.2 | +
7 | +3 | +71 | +17 | +6 | +102.7 | +
8 | +1 | +31 | +22 | +44 | +72.5 | +
9 | +2 | +54 | +18 | +22 | +93.1 | +
10 | +21 | +47 | +4 | +26 | +115.9 | +
11 | +1 | +40 | +23 | +34 | +83.8 | +
12 | +11 | +66 | +9 | +12 | +113.3 | +
13 | +10 | +68 | +8 | +12 | +109.4 | +
from sklearn.linear_model import LinearRegression, Ridge, Lasso
+from sklearn.model_selection import train_test_split
+import pandas as pd
+
+
+# 读取数据
+data = {
+ 'X1': [7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10],
+ 'X2': [26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68],
+ 'X3': [6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 8],
+ 'X4': [60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 12, 12],
+ 'Y': [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4]
+}
+df = pd.DataFrame(data)
+
+# 将数据集分为训练集和测试集,比例为 8:2
+X_train, X_test, Y_train, Y_test = train_test_split(df.iloc[:, :-1], df.iloc[:, -1], test_size=0.2, random_state=40)
+
+# 使用线性回归
+print("=========线性回归结果=========")
+lr = LinearRegression()
+lr.fit(X_train, Y_train)
+print("w系数:", lr.coef_)
+print("b系数:", lr.intercept_)
+
+# 使用岭回归
+print("=========岭回归结果=========")
+ridge = Ridge(alpha=0.5)
+ridge.fit(X_train, Y_train)
+print("w系数:", ridge.coef_)
+print("b系数:", ridge.intercept_)
+
+# 使用lasso回归
+print("=========lasso回归结果=========")
+lasso = Lasso(alpha=0.1)
+lasso.fit(X_train, Y_train)
+print("w系数:", lasso.coef_)
+print("b系数:", lasso.intercept_)
+
=========线性回归结果========= +w系数: [ 1.37914915 0.52235563 -0.11353673 -0.16566386] +b系数: 66.18042444982316 +=========岭回归结果========= +w系数: [ 1.28094154 0.44448557 -0.20599848 -0.24283658] +b系数: 74.031595075019 +=========lasso回归结果========= +w系数: [ 1.405279 0.55172639 -0.08210026 -0.13686687] +b系数: 63.340523160186265 ++
注:训练集:测试集=1:1,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果输出你预测结果、实际结果以及模型得分三项。
+序号 | +年龄 | +收入 | +是否为学生 | +信誉 | +购买计算机 | +
---|---|---|---|---|---|
1 | +<=30 | +高 | +否 | +中 | +否 | +
2 | +<=30 | +高 | +否 | +优 | +否 | +
3 | +31-40 | +高 | +否 | +中 | +是 | +
4 | +>40 | +中 | +否 | +中 | +是 | +
5 | +>40 | +低 | +是 | +中 | +是 | +
6 | +>40 | +低 | +是 | +优 | +否 | +
7 | +31-40 | +低 | +是 | +优 | +是 | +
8 | +<=30 | +中 | +否 | +中 | +否 | +
9 | +<=30 | +低 | +是 | +中 | +是 | +
10 | +>40 | +中 | +是 | +中 | +是 | +
11 | +<=30 | +中 | +是 | +优 | +是 | +
12 | +31-40 | +中 | +否 | +优 | +是 | +
13 | +31-40 | +高 | +是 | +中 | +是 | +
14 | +>40 | +中 | +否 | +优 | +否 | +
from sklearn.naive_bayes import GaussianNB
+from sklearn.model_selection import train_test_split
+from sklearn.metrics import accuracy_score
+import pandas as pd
+
+
+# 读取数据
+data = {
+ '年龄': ['<=30', '<=30', '31-40', '>40', '>40', '>40', '31-40', '<=30', '<=30', '>40', '<=30', '31-40', '31-40', '>40'],
+ '收入': ['高', '高', '高', '中', '低', '低', '低', '中', '低', '中', '中', '中', '高', '中'],
+ '是否为学生': ['否', '否', '否', '否', '是', '是', '是', '否', '是', '是', '是', '否', '是', '否'],
+ '信誉': ['中', '优', '中', '中', '中', '优', '优', '中', '中', '中', '优', '优', '中', '优'],
+ '购买计算机': ['否', '否', '是', '是', '是', '否', '是', '否', '是', '是', '是', '是', '是', '否']
+}
+df = pd.DataFrame(data)
+
+# 将分类变量转换为数值变量
+df['年龄'] = df['年龄'].map({'<=30': 0, '31-40': 1, '>40': 2})
+df['收入'] = df['收入'].map({'高': 0, '中': 1, '低': 2})
+df['是否为学生'] = df['是否为学生'].map({'是': 0, '否': 1})
+df['信誉'] = df['信誉'].map({'优': 0, '中': 1})
+df['购买计算机'] = df['购买计算机'].map({'是': 0, '否': 1})
+
+# 将数据集分为训练集和测试集,比例为 1:1
+X_train, X_test, Y_train, Y_test = train_test_split(df.iloc[:, :-1], df.iloc[:, -1], test_size=0.5, random_state=40)
+
+# 使用高斯朴素贝叶斯建模
+clf = GaussianNB()
+clf.fit(X_train, Y_train)
+
+# 进行预测
+Y_pred = clf.predict(X_test)
+
+# 输出结果
+print("预测结果:", Y_pred)
+print("实际结果:", Y_test.values)
+print("模型得分:", accuracy_score(Y_test, Y_pred))
+
预测结果: [0 0 0 0 0 0 0] +实际结果: [1 1 0 0 0 0 1] +模型得分: 0.5714285714285714 ++
+