|
|
|
@ -0,0 +1,95 @@
|
|
|
|
|
import matplotlib
|
|
|
|
|
import torch
|
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
|
from torchvision import transforms
|
|
|
|
|
from torchvision.datasets import MNIST
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
matplotlib.use('TkAgg')
|
|
|
|
|
|
|
|
|
|
# 神经网络类 主体
|
|
|
|
|
class Net(torch.nn.Module):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super().__init__()
|
|
|
|
|
# 四个全连接层
|
|
|
|
|
self.fc1 = torch.nn.Linear(28 * 28, 64) # 输入28*28像素的图像 64个节点
|
|
|
|
|
self.fc2 = torch.nn.Linear(64, 64)
|
|
|
|
|
self.fc3 = torch.nn.Linear(64, 64)
|
|
|
|
|
self.fc4 = torch.nn.Linear(64, 10) # 输出十个数字类别
|
|
|
|
|
|
|
|
|
|
def forward(self, x): # x:图像输入
|
|
|
|
|
# 每层首先做全连接线性计算 self.fc1 再套上激活函数torch.nn.functional.relu
|
|
|
|
|
x = torch.nn.functional.relu(self.fc1(x))
|
|
|
|
|
x = torch.nn.functional.relu(self.fc2(x))
|
|
|
|
|
x = torch.nn.functional.relu(self.fc3(x))
|
|
|
|
|
# 输出层通过softmax进行归一化
|
|
|
|
|
x = torch.nn.functional.log_softmax(self.fc4(x), dim=1)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 下载MNIST数据集 导入数据
|
|
|
|
|
def get_data_loader(is_train):
|
|
|
|
|
# tensor 多维数组 张量
|
|
|
|
|
to_tensor = transforms.Compose([transforms.ToTensor()])
|
|
|
|
|
"""
|
|
|
|
|
第一个参数:''标识数据集下载位置 空表示下载到当前目录
|
|
|
|
|
is_train:指定导入训练集
|
|
|
|
|
"""
|
|
|
|
|
data_set = MNIST('', is_train, transform=to_tensor, download=True)
|
|
|
|
|
# batch_size:一个批次包含15张图片 shuffle=True:数据随机打乱
|
|
|
|
|
return DataLoader(data_set, batch_size=15, shuffle=True) # 返回数据加载器DataLoader()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 评估神经网络识别正确率
|
|
|
|
|
def evaluate(test_data, net):
|
|
|
|
|
# 正确预测数量
|
|
|
|
|
n_correct = 0
|
|
|
|
|
# 预测总数
|
|
|
|
|
n_total = 0
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
# 从测试集依次取出数据
|
|
|
|
|
for (x, y) in test_data:
|
|
|
|
|
# 计算神经网络预测值
|
|
|
|
|
outputs = net.forward(x.view(-1, 28 * 28))
|
|
|
|
|
# 对批次结果进行比较
|
|
|
|
|
for i, output in enumerate(outputs):
|
|
|
|
|
# 累加正确预测的数量 argmax 计算数列中最大结果,即预测的手写数字结果
|
|
|
|
|
if torch.argmax(output) == y[i]:
|
|
|
|
|
n_correct += 1
|
|
|
|
|
n_total += 1
|
|
|
|
|
# 返回预测正确率
|
|
|
|
|
return n_correct / n_total
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
# 导入训练集
|
|
|
|
|
train_data = get_data_loader(is_train=True)
|
|
|
|
|
# 导入测试集
|
|
|
|
|
test_data = get_data_loader(is_train=False)
|
|
|
|
|
# 初始化神经网络
|
|
|
|
|
net = Net()
|
|
|
|
|
# 打印最开始的时候的正确率 约为0.1左右
|
|
|
|
|
print('初始神经网络正确率:', evaluate(test_data, net))
|
|
|
|
|
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
|
|
|
|
|
# epoch:轮次 反复使用train_data进行训练神经网络,提高训练集利用率
|
|
|
|
|
for epoch in range(2):
|
|
|
|
|
for (x, y) in train_data:
|
|
|
|
|
net.zero_grad() # 初始化
|
|
|
|
|
output = net.forward(x.view(-1, 28 * 28)) # 正向传播
|
|
|
|
|
# nll_lose 对数损失函数 与前的softmax对数计算进行对应
|
|
|
|
|
loss = torch.nn.functional.nll_loss(output, y) # 计算差值
|
|
|
|
|
loss.backward() # 反向误差传播
|
|
|
|
|
optimizer.step() # 优化网络参数
|
|
|
|
|
print('第', epoch+1, '次训练后准确率:', evaluate(test_data, net))
|
|
|
|
|
# 随机抽取三张图象显示网络预测结果
|
|
|
|
|
for (n, (x, _)) in enumerate(test_data):
|
|
|
|
|
if n > 2:
|
|
|
|
|
break
|
|
|
|
|
predict = torch.argmax(net.forward(x[0].view(-1, 28 * 28)))
|
|
|
|
|
plt.figure(n)
|
|
|
|
|
plt.imshow(x[0].view(28, 28))
|
|
|
|
|
plt.title('prediction:' + str(int(predict)))
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
main()
|