from sklearn.neighbors.KNneighborsClassifier(n_neighnprs = 5) from sklearn.neighbors import KNneighborsClassifier import warings warings.filterwarnings('ignore') ''' def dm01_knnapi_Classifier(): estimator = KNneighborsClassifier(n_neighnprs =1) x = random.randomint(0,5) y = [0,0,1,1] # 实例化API estimator = KNeighborsClassifier(n_neighbors=3) # 使用fit法进行训练 estimator.fit(x, y) estimator.predict([1]) ''' x = [[0,2],[1,3],[2,5],[3,6],[4,2]] y = [0,0,0,1,1] # 实例化API estimator = KNeighborsClassifier(n_neighbors=3) estimator.fit(x,y) # 预测 mypre = estimator.predict([[3,6],[3,4],[2,5]) print(f'mypre:{mypre}')