import os import django from django.conf import settings os.chdir('D:/python/djangoProject/test_Bootstrap') # 设置 Django 环境变量 os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'test_Bootstrap.settings') # print('开始初始化') # # 强制初始化 Django django.setup() # print("Django configured.") print("Starting Streamlit...") import streamlit as st from streamlit_vertical_slider import vertical_slider from st_pages import Page, Section, show_pages, add_page_title, add_indentation add_page_title() add_indentation() import streamlit as st import streamlit as st # 定义点击回调函数 def reset_weights(): st.session_state.slider_values = [32, 12, 43, 12, 12] st.session_state.reset_trigger += 1 # 初始化 session state 中的键 if 'slider_values' not in st.session_state: st.session_state.slider_values = [32, 12, 43, 12, 12] if 'reset_trigger' not in st.session_state: st.session_state.reset_trigger = 0 if 'fund_code' not in st.session_state: st.session_state['fund_code'] = '' col1, col2 = st.columns([0.8, 0.2]) with col1: # 使用 HTML 和内联CSS来增加字体大小 st.markdown("""
基金推荐
""", unsafe_allow_html=True) # with col2: # st.button("使用默认权重", key="hidden_button", on_click=reset_weights) col1, col2 = st.columns([0.8, 0.2]) with col1: st.markdown('######') # 创建滑块 columns = st.columns(5) labels = [ "国家流感中心周报数据", "北京疾控中心数据", "百度流感指数数据", "药品相关股票数据", "流感相关基金数据" ] descriptions = [ "详细数据来自国家流感中心的周报。", "来自北京市疾控中心的相关数据。", "基于百度搜索指数的流感数据。", "涉及流感药品的股票数据。", "投资于流感相关领域的基金数据。" ] # 定义点击回调函数 def reset_model_weights(): st.session_state.model_slider_values = [2, 12, 43, 12, 12] st.session_state.reset_trigger += 1 # 初始化 session state 中的键 if 'model_slider_values' not in st.session_state: st.session_state.model_slider_values = [2, 12, 43, 12, 12] if 'reset_trigger' not in st.session_state: st.session_state.reset_trigger = 0 # #从滑块获取模型权重 model_values_list = [2, 12, 43, 12, 12] # st.write('滑块数值:',model_values_list) # print(model_values_list) #基金预测函数 # 添加项目根目录到sys.path import os import sys project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), r'D:\python\djangoProject\\test_Bootstrap')) sys.path.append(project_root) from app_test.add_fund_data import add_fund_data from app_test.VAR import VAR_run from app_test.RF import RF_run from app_test.ARIMA import ARIMA_run import pandas as pd import json from pyecharts import options as opts import streamlit.components.v1 as components import numpy as np from app_test.models import RecommendedFund def fund_predect(fund_code,idx): # fund_code = st.session_state.fund_code print(f'开始预测') data = add_fund_data(fund_code) VAR_result = VAR_run(data, 'fund_data', '') power_var = model_values_list[2] / (model_values_list[1] + model_values_list[2]) power_rf = model_values_list[1] / (model_values_list[1] + model_values_list[2]) VAR_result = VAR_result.to_frame(name='fund_data') # print(VAR_result, type(VAR_result)) RF_result = RF_run(data, 'fund_data', ['liugan_index', 'infection_number_x', 'infection_number_y', 'jijin_data', 'shoupan']) # print(ARIMA_run(data,'fund_data',['liugan_index','infection_number_x', 'infection_number_y', 'jijin_data', 'shoupan'])) # print(RF_result, type(RF_result)) VAR = [item[0] for item in VAR_result.values.tolist()] RF = [item[0] for item in RF_result.values.tolist()] pre = [VAR[i] * power_var + RF[i] * power_rf for i in range(len(VAR))] # 找到列表中的最小值和最大值 min_val = min(pre) max_val = max(pre) # 计算每个值相对于最小值的差异比例 pre = [(x - min_val) / (max_val - min_val) for x in pre] # 将差异比例放大 pre= [x * 100 for x in pre] print("放大差异后的列表:", pre) # print(pre,type(pre)) date_column = VAR_result.iloc[:, 0] date = date_column.index.tolist() date = [str(i)[:10] for i in date] print('这是预测结果') result = pd.DataFrame({ 'date': date, 'prediction': pre }) print(result, type(result)) # 可视化预测结果 # date_js = json.dumps(date) # data_js = json.dumps(pre) fund_recommand(date,pre,idx) return date,pre def result_visualization(date_js, data_js,pic_name,fund_code): col = columns = st.columns(1)[0] with col: st.markdown(f"##### {pic_name}") st.markdown("基金代码:" + fund_code) # 使用 Markdown 来提供一致的文本框高度 # st.markdown() date_js = json.dumps(date_js) data_js = json.dumps(data_js) html_content = f"""
""" # 使用 Streamlit 的 HTML 函数将 HTML 内容嵌入页面中 components.html(html_content, height=350) def fund_recommand(date,pre,idx): date_js = date data_js = pre print("===数据===") print("date_js:",date_js) print("data_js:",data_js) is_up = False print("基金推荐结果:",fund_name[idx]) print(data_js) print(data_js[0],data_js[-1]) if(data_js[0]