/* Copyright (c) 2006, Michael Kazhdan and Matthew Bolitho All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the Johns Hopkins University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include "Factor.h" //////////////// // Polynomial // //////////////// template Polynomial::Polynomial(void){memset(coefficients,0,sizeof(double)*(Degree+1));} template template Polynomial::Polynomial(const Polynomial& P){ memset(coefficients,0,sizeof(double)*(Degree+1)); for(int i=0;i<=Degree && i<=Degree2;i++){coefficients[i]=P.coefficients[i];} } template template Polynomial& Polynomial::operator = (const Polynomial &p){ int d=Degree Polynomial Polynomial::derivative(void) const{ Polynomial p; for(int i=0;i Polynomial Polynomial::integral(void) const{ Polynomial p; p.coefficients[0]=0; for(int i=0;i<=Degree;i++){p.coefficients[i+1]=coefficients[i]/(i+1);} return p; } template<> double Polynomial< 0 >::operator() ( double t ) const { return coefficients[0]; } template<> double Polynomial< 1 >::operator() ( double t ) const { return coefficients[0]+coefficients[1]*t; } template<> double Polynomial< 2 >::operator() ( double t ) const { return coefficients[0]+(coefficients[1]+coefficients[2]*t)*t; } template double Polynomial::operator() ( double t ) const{ double v=coefficients[Degree]; for( int d=Degree-1 ; d>=0 ; d-- ) v = v*t + coefficients[d]; return v; } template double Polynomial::integral( double tMin , double tMax ) const { double v=0; double t1,t2; t1=tMin; t2=tMax; for(int i=0;i<=Degree;i++){ v+=coefficients[i]*(t2-t1)/(i+1); if(t1!=-DBL_MAX && t1!=DBL_MAX){t1*=tMin;} if(t2!=-DBL_MAX && t2!=DBL_MAX){t2*=tMax;} } return v; } template int Polynomial::operator == (const Polynomial& p) const{ for(int i=0;i<=Degree;i++){if(coefficients[i]!=p.coefficients[i]){return 0;}} return 1; } template int Polynomial::operator != (const Polynomial& p) const{ for(int i=0;i<=Degree;i++){if(coefficients[i]==p.coefficients[i]){return 0;}} return 1; } template int Polynomial::isZero(void) const{ for(int i=0;i<=Degree;i++){if(coefficients[i]!=0){return 0;}} return 1; } template void Polynomial::setZero(void){memset(coefficients,0,sizeof(double)*(Degree+1));} template Polynomial& Polynomial::addScaled(const Polynomial& p,double s){ for(int i=0;i<=Degree;i++){coefficients[i]+=p.coefficients[i]*s;} return *this; } template Polynomial& Polynomial::operator += (const Polynomial& p){ for(int i=0;i<=Degree;i++){coefficients[i]+=p.coefficients[i];} return *this; } template Polynomial& Polynomial::operator -= (const Polynomial& p){ for(int i=0;i<=Degree;i++){coefficients[i]-=p.coefficients[i];} return *this; } template Polynomial Polynomial::operator + (const Polynomial& p) const{ Polynomial q; for(int i=0;i<=Degree;i++){q.coefficients[i]=(coefficients[i]+p.coefficients[i]);} return q; } template Polynomial Polynomial::operator - (const Polynomial& p) const{ Polynomial q; for(int i=0;i<=Degree;i++) {q.coefficients[i]=coefficients[i]-p.coefficients[i];} return q; } template void Polynomial::Scale(const Polynomial& p,double w,Polynomial& q){ for(int i=0;i<=Degree;i++){q.coefficients[i]=p.coefficients[i]*w;} } template void Polynomial::AddScaled(const Polynomial& p1,double w1,const Polynomial& p2,double w2,Polynomial& q){ for(int i=0;i<=Degree;i++){q.coefficients[i]=p1.coefficients[i]*w1+p2.coefficients[i]*w2;} } template void Polynomial::AddScaled(const Polynomial& p1,double w1,const Polynomial& p2,Polynomial& q){ for(int i=0;i<=Degree;i++){q.coefficients[i]=p1.coefficients[i]*w1+p2.coefficients[i];} } template void Polynomial::AddScaled(const Polynomial& p1,const Polynomial& p2,double w2,Polynomial& q){ for(int i=0;i<=Degree;i++){q.coefficients[i]=p1.coefficients[i]+p2.coefficients[i]*w2;} } template void Polynomial::Subtract(const Polynomial &p1,const Polynomial& p2,Polynomial& q){ for(int i=0;i<=Degree;i++){q.coefficients[i]=p1.coefficients[i]-p2.coefficients[i];} } template void Polynomial::Negate(const Polynomial& in,Polynomial& out){ out=in; for(int i=0;i<=Degree;i++){out.coefficients[i]=-out.coefficients[i];} } template Polynomial Polynomial::operator - (void) const{ Polynomial q=*this; for(int i=0;i<=Degree;i++){q.coefficients[i]=-q.coefficients[i];} return q; } template template Polynomial Polynomial::operator * (const Polynomial& p) const{ Polynomial q; for(int i=0;i<=Degree;i++){for(int j=0;j<=Degree2;j++){q.coefficients[i+j]+=coefficients[i]*p.coefficients[j];}} return q; } template Polynomial& Polynomial::operator += ( double s ) { coefficients[0]+=s; return *this; } template Polynomial& Polynomial::operator -= ( double s ) { coefficients[0]-=s; return *this; } template Polynomial& Polynomial::operator *= ( double s ) { for(int i=0;i<=Degree;i++){coefficients[i]*=s;} return *this; } template Polynomial& Polynomial::operator /= ( double s ) { for(int i=0;i<=Degree;i++){coefficients[i]/=s;} return *this; } template Polynomial Polynomial::operator + ( double s ) const { Polynomial q=*this; q.coefficients[0]+=s; return q; } template Polynomial Polynomial::operator - ( double s ) const { Polynomial q=*this; q.coefficients[0]-=s; return q; } template Polynomial Polynomial::operator * ( double s ) const { Polynomial q; for(int i=0;i<=Degree;i++){q.coefficients[i]=coefficients[i]*s;} return q; } template Polynomial Polynomial::operator / ( double s ) const { Polynomial q; for( int i=0 ; i<=Degree ; i++ ) q.coefficients[i] = coefficients[i]/s; return q; } template Polynomial Polynomial::scale( double s ) const { Polynomial q=*this; double s2=1.0; for(int i=0;i<=Degree;i++){ q.coefficients[i]*=s2; s2/=s; } return q; } template Polynomial Polynomial::shift( double t ) const { Polynomial q; for(int i=0;i<=Degree;i++){ double temp=1; for(int j=i;j>=0;j--){ q.coefficients[j]+=coefficients[i]*temp; temp*=-t*j; temp/=(i-j+1); } } return q; } template void Polynomial::printnl(void) const{ for(int j=0;j<=Degree;j++){ printf("%6.4f x^%d ",coefficients[j],j); if(j=0){printf("+");} } printf("\n"); } template void Polynomial::getSolutions(double c,std::vector& roots,double EPS) const { double r[4][2]; int rCount=0; roots.clear(); switch(Degree){ case 1: rCount=Factor(coefficients[1],coefficients[0]-c,r,EPS); break; case 2: rCount=Factor(coefficients[2],coefficients[1],coefficients[0]-c,r,EPS); break; case 3: rCount=Factor(coefficients[3],coefficients[2],coefficients[1],coefficients[0]-c,r,EPS); break; // case 4: // rCount=Factor(coefficients[4],coefficients[3],coefficients[2],coefficients[1],coefficients[0]-c,r,EPS); // break; default: printf("Can't solve polynomial of degree: %d\n",Degree); } for(int i=0;i int Polynomial::getSolutions( double c , double* roots , double EPS ) const { double _roots[4][2]; int _rCount=0; switch( Degree ) { case 1: _rCount = Factor( coefficients[1] , coefficients[0]-c , _roots , EPS ) ; break; case 2: _rCount = Factor( coefficients[2] , coefficients[1] , coefficients[0]-c , _roots , EPS ) ; break; case 3: _rCount = Factor( coefficients[3] , coefficients[2] , coefficients[1] , coefficients[0]-c , _roots , EPS ) ; break; // case 4: _rCount = Factor( coefficients[4] , coefficients[3] , coefficients[2] , coefficients[1] , coefficients[0]-c , _roots , EPS ) ; break; default: printf( "Can't solve polynomial of degree: %d\n" , Degree ); } int rCount = 0; for( int i=0 ; i<_rCount ; i++ ) if( fabs(_roots[i][1])<=EPS ) roots[rCount++] = _roots[i][0]; return rCount; } // The 0-th order B-spline template< > Polynomial< 0 > Polynomial< 0 >::BSplineComponent( int i ) { Polynomial p; p.coefficients[0] = 1.; return p; } // The Degree-th order B-spline template< int Degree > Polynomial< Degree > Polynomial< Degree >::BSplineComponent( int i ) { // B_d^i(x) = \int_x^1 B_{d-1}^{i}(y) dy + \int_0^x B_{d-1}^{i-1} y dy // = \int_0^1 B_{d-1}^{i}(y) dy - \int_0^x B_{d-1}^{i}(y) dy + \int_0^x B_{d-1}^{i-1} y dy Polynomial p; if( i _p = Polynomial< Degree-1 >::BSplineComponent( i ).integral(); p -= _p; p.coefficients[0] += _p(1); } if( i>0 ) { Polynomial< Degree > _p = Polynomial< Degree-1 >::BSplineComponent( i-1 ).integral(); p += _p; } return p; } // The 0-th order B-spline values template< > void Polynomial< 0 >::BSplineComponentValues( double x , double* values ){ values[0] = 1.; } // The Degree-th order B-spline template< int Degree > void Polynomial< Degree >::BSplineComponentValues( double x , double* values ) { const double Scale = 1./Degree; Polynomial< Degree-1 >::BSplineComponentValues( x , values+1 ); values[0] = values[1] * (1.-x) * Scale; for( int i=1 ; i void Polynomial< 0 >::BinomialCoefficients( int bCoefficients[1] ){ bCoefficients[0] = 1; } template< int Degree > void Polynomial< Degree >::BinomialCoefficients( int bCoefficients[Degree+1] ) { Polynomial< Degree-1 >::BinomialCoefficients( bCoefficients ); int leftValue = 0; for( int i=0 ; i