/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #ifndef FLANN_HPP_ #define FLANN_HPP_ #include #include #include #include #include "FLANN/general.h" #include "FLANN/util/matrix.h" #include "FLANN/util/params.h" #include "FLANN/util/saving.h" #include "FLANN/algorithms/all_indices.h" namespace flann { /** * Sets the log level used for all flann functions * @param level Verbosity level */ inline void log_verbosity(int level) { if (level >= 0) { Logger::setLevel(level); } } /** * (Deprecated) Index parameters for creating a saved index. */ struct SavedIndexParams : public IndexParams { SavedIndexParams(std::string filename) { (*this)["algorithm"] = FLANN_INDEX_SAVED; (*this)["filename"] = filename; } }; template class Index { public: typedef typename Distance::ElementType ElementType; typedef typename Distance::ResultType DistanceType; typedef NNIndex IndexType; Index(const IndexParams& params, Distance distance = Distance() ) : index_params_(params) { flann_algorithm_t index_type = get_param(params,"algorithm"); loaded_ = false; Matrix features; if (index_type == FLANN_INDEX_SAVED) { nnIndex_ = load_saved_index(features, get_param(params,"filename"), distance); loaded_ = true; } else { flann_algorithm_t index_type = get_param(params, "algorithm"); nnIndex_ = create_index_by_type(index_type, features, params, distance); } } Index(const Matrix& features, const IndexParams& params, Distance distance = Distance() ) : index_params_(params) { flann_algorithm_t index_type = get_param(params,"algorithm"); loaded_ = false; if (index_type == FLANN_INDEX_SAVED) { nnIndex_ = load_saved_index(features, get_param(params,"filename"), distance); loaded_ = true; } else { flann_algorithm_t index_type = get_param(params, "algorithm"); nnIndex_ = create_index_by_type(index_type, features, params, distance); } } Index(const Index& other) : loaded_(other.loaded_), index_params_(other.index_params_) { nnIndex_ = other.nnIndex_->clone(); } Index& operator=(Index other) { this->swap(other); return *this; } virtual ~Index() { delete nnIndex_; } /** * Builds the index. */ void buildIndex() { if (!loaded_) { nnIndex_->buildIndex(); } } void buildIndex(const Matrix& points) { nnIndex_->buildIndex(points); } void addPoints(const Matrix& points, float rebuild_threshold = 2) { nnIndex_->addPoints(points, rebuild_threshold); } /** * Remove point from the index * @param index Index of point to be removed */ void removePoint(size_t point_id) { nnIndex_->removePoint(point_id); } /** * Returns pointer to a data point with the specified id. * @param point_id the id of point to retrieve * @return */ ElementType* getPoint(size_t point_id) { return nnIndex_->getPoint(point_id); } /** * Save index to file * @param filename */ void save(std::string filename) { FILE* fout = fopen(filename.c_str(), "wb"); if (fout == NULL) { throw FLANNException("Cannot open file"); } nnIndex_->saveIndex(fout); fclose(fout); } /** * \returns number of features in this index. */ size_t veclen() const { return nnIndex_->veclen(); } /** * \returns The dimensionality of the features in this index. */ size_t size() const { return nnIndex_->size(); } /** * \returns The index type (kdtree, kmeans,...) */ flann_algorithm_t getType() const { return nnIndex_->getType(); } /** * \returns The amount of memory (in bytes) used by the index. */ int usedMemory() const { return nnIndex_->usedMemory(); } /** * \returns The index parameters */ IndexParams getParameters() const { return nnIndex_->getParameters(); } /** * \brief Perform k-nearest neighbor search * \param[in] queries The query points for which to find the nearest neighbors * \param[out] indices The indices of the nearest neighbors found * \param[out] dists Distances to the nearest neighbors found * \param[in] knn Number of nearest neighbors to return * \param[in] params Search parameters */ int knnSearch(const Matrix& queries, Matrix& indices, Matrix& dists, size_t knn, const SearchParams& params) const { return nnIndex_->knnSearch(queries, indices, dists, knn, params); } /** * * @param queries * @param indices * @param dists * @param knn * @param params * @return */ int knnSearch(const Matrix& queries, Matrix& indices, Matrix& dists, size_t knn, const SearchParams& params) const { return nnIndex_->knnSearch(queries, indices, dists, knn, params); } /** * \brief Perform k-nearest neighbor search * \param[in] queries The query points for which to find the nearest neighbors * \param[out] indices The indices of the nearest neighbors found * \param[out] dists Distances to the nearest neighbors found * \param[in] knn Number of nearest neighbors to return * \param[in] params Search parameters */ int knnSearch(const Matrix& queries, std::vector< std::vector >& indices, std::vector >& dists, size_t knn, const SearchParams& params) const { return nnIndex_->knnSearch(queries, indices, dists, knn, params); } /** * * @param queries * @param indices * @param dists * @param knn * @param params * @return */ int knnSearch(const Matrix& queries, std::vector< std::vector >& indices, std::vector >& dists, size_t knn, const SearchParams& params) const { return nnIndex_->knnSearch(queries, indices, dists, knn, params); } /** * \brief Perform radius search * \param[in] queries The query points * \param[out] indices The indices of the neighbors found within the given radius * \param[out] dists The distances to the nearest neighbors found * \param[in] radius The radius used for search * \param[in] params Search parameters * \returns Number of neighbors found */ int radiusSearch(const Matrix& queries, Matrix& indices, Matrix& dists, float radius, const SearchParams& params) const { return nnIndex_->radiusSearch(queries, indices, dists, radius, params); } /** * * @param queries * @param indices * @param dists * @param radius * @param params * @return */ int radiusSearch(const Matrix& queries, Matrix& indices, Matrix& dists, float radius, const SearchParams& params) const { return nnIndex_->radiusSearch(queries, indices, dists, radius, params); } /** * \brief Perform radius search * \param[in] queries The query points * \param[out] indices The indices of the neighbors found within the given radius * \param[out] dists The distances to the nearest neighbors found * \param[in] radius The radius used for search * \param[in] params Search parameters * \returns Number of neighbors found */ int radiusSearch(const Matrix& queries, std::vector< std::vector >& indices, std::vector >& dists, float radius, const SearchParams& params) const { return nnIndex_->radiusSearch(queries, indices, dists, radius, params); } /** * * @param queries * @param indices * @param dists * @param radius * @param params * @return */ int radiusSearch(const Matrix& queries, std::vector< std::vector >& indices, std::vector >& dists, float radius, const SearchParams& params) const { return nnIndex_->radiusSearch(queries, indices, dists, radius, params); } private: IndexType* load_saved_index(const Matrix& dataset, const std::string& filename, Distance distance) { FILE* fin = fopen(filename.c_str(), "rb"); if (fin == NULL) { return NULL; } IndexHeader header = load_header(fin); if (header.h.data_type != flann_datatype_value::value) { throw FLANNException("Datatype of saved index is different than of the one to be loaded."); } IndexParams params; params["algorithm"] = header.h.index_type; IndexType* nnIndex = create_index_by_type(header.h.index_type, dataset, params, distance); rewind(fin); nnIndex->loadIndex(fin); fclose(fin); return nnIndex; } void swap( Index& other) { std::swap(nnIndex_, other.nnIndex_); std::swap(loaded_, other.loaded_); std::swap(index_params_, other.index_params_); } private: /** Pointer to actual index class */ IndexType* nnIndex_; /** Indices if the index was loaded from a file */ bool loaded_; /** Parameters passed to the index */ IndexParams index_params_; }; /** * Performs a hierarchical clustering of the points passed as argument and then takes a cut in the * the clustering tree to return a flat clustering. * @param[in] points Points to be clustered * @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the * number of clusters requested. * @param params Clustering parameters (The same as for flann::KMeansIndex) * @param d Distance to be used for clustering (eg: flann::L2) * @return number of clusters computed (can be different than clusters.rows and is the highest number * of the form (branching-1)*K+1 smaller than clusters.rows). */ template int hierarchicalClustering(const Matrix& points, Matrix& centers, const KMeansIndexParams& params, Distance d = Distance()) { KMeansIndex kmeans(points, params, d); kmeans.buildIndex(); int clusterNum = kmeans.getClusterCenters(centers); return clusterNum; } } #endif /* FLANN_HPP_ */