import av import numpy import tellopy import cv2 import os import json import math import time import sys import traceback import torch from torch.autograd import Variable import torch.nn.functional as F import torchvision.transforms as transforms import torch.nn as nn import torch.utils.data import numpy as np from AlphaPose.opt import opt from AlphaPose.dataloader import ImageLoader, DetectionLoader, DetectionProcessor, DataWriter, Mscoco from AlphaPose.yolo.util import write_results, dynamic_write_results from AlphaPose.SPPE.src.main_fast_inference import * import os import sys from tqdm import tqdm import time from AlphaPose.fn import getTime class AlphaPose_control: # 设置参数 args = opt args.inputpath = '../AlphaPose/duan_alphapose/photo/' args.outputpath = '../AlphaPose/duan_alphapose/' args.sp = True args.dataset = 'coco' img_path = args.inputpath if not args.sp: torch.multiprocessing.set_start_method('forkserver', force=True) torch.multiprocessing.set_sharing_strategy('file_system') def __init__(self): pass # 获取图像 def GetImage(self,args): inputpath = args.inputpath inputlist = args.inputlist mode = args.mode if not os.path.exists(args.outputpath): os.mkdir(args.outputpath) for root, dirs, files in os.walk(inputpath): im_names = files return im_names # 下载模型 def downModel(self): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load pose model print('Loading YOLO model...') pose_dataset = Mscoco() if self.args.fast_inference: pose_model = InferenNet_fast(4 * 1 + 1, pose_dataset) else: pose_model = InferenNet(4 * 1 + 1, pose_dataset) pose_model.to(device) pose_model.eval() return pose_model # 处理图像,提取关键点 def Alphapose(self,im_names, pose_model, ): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load input images data_loader = ImageLoader(im_names, batchSize=self.args.detbatch, format='yolo').start() # Load detection loader sys.stdout.flush() det_loader = DetectionLoader(data_loader, batchSize=self.args.detbatch).start() det_processor = DetectionProcessor(det_loader).start() runtime_profile = { 'dt': [], 'pt': [], 'pn': [] } # Init data writer writer = DataWriter(self.args.save_video).start() data_len = data_loader.length() im_names_desc = tqdm(range(data_len)) batchSize = self.args.posebatch for i in im_names_desc: start_time = getTime() with torch.no_grad(): (inps, orig_img, im_name, boxes, scores, pt1, pt2) = det_processor.read() if boxes is None or boxes.nelement() == 0: writer.save(None, None, None, None, None, orig_img, im_name.split('/')[-1]) continue ckpt_time, det_time = getTime(start_time) runtime_profile['dt'].append(det_time) # Pose Estimation datalen = inps.size(0) leftover = 0 if (datalen) % batchSize: leftover = 1 num_batches = datalen // batchSize + leftover hm = [] for j in range(num_batches): inps_j = inps[j * batchSize:min((j + 1) * batchSize, datalen)].to(device) hm_j = pose_model(inps_j) hm.append(hm_j) hm = torch.cat(hm) ckpt_time, pose_time = getTime(ckpt_time) runtime_profile['pt'].append(pose_time) hm = hm.cpu() writer.save(boxes, scores, hm, pt1, pt2, orig_img, im_name.split('/')[-1]) ckpt_time, post_time = getTime(ckpt_time) runtime_profile['pn'].append(post_time) if self.args.profile: # TQDM im_names_desc.set_description( 'det time: {dt:.3f} | pose time: {pt:.2f} | post processing: {pn:.4f}'.format( dt=np.mean(runtime_profile['dt']), pt=np.mean(runtime_profile['pt']), pn=np.mean(runtime_profile['pn'])) ) print('Finish Model Running.') if (self.args.save_img or self.args.save_video) and not self.args.vis_fast: print('===========================> Rendering remaining images in the queue...') print( '===========================> If this step takes too long, you can enable the --vis_fast flag to use fast rendering (real-time).') while (writer.running()): pass writer.stop() final_result = writer.results() # write_json(final_result, args.outputpath) try: if final_result[0]['result']: return final_result[0]['result'][0]['keypoints'] else: return None except: return None # 根据关键点分析动作,绘制图像 def PoseFind(self,point_results): '''point_result是关键点信息,一个tensor数组 {0, "Nose"}, {1, "LEye"}, {2, "REye"}, {3, "LEar"}, {4, "REar"}, {5, "LShoulder"}, {6, "RShoulder"}, {7, "LElbow"}, {8, "RElbow"}, {9, "LWrist"}, {10, "RWrist"}, {11, "LHip"}, {12, "RHip"}, {13, "LKnee"}, {14, "Rknee"}, {15, "LAnkle"}, {16, "RAnkle"}, ''' # 登记LH左手、LE左肘、LS左肩、RH右手、RE右肘、RS右肩数据 # LS_X = int(numbers[0]['keypoints'][15]) LS_Y = int(point_results[5][1].item()) # RS_X = int(numbers[0]['keypoints'][18]) RS_Y = int(point_results[6][1].item()) # LE_X = int(numbers[0]['keypoints'][21]) LE_Y = int(point_results[7][1].item()) # RE_X = int(numbers[0]['keypoints'][24]) RE_Y = int(point_results[8][1].item()) # LH_X = int(numbers[0]['keypoints'][27]) LH_Y = int(point_results[9][1].item()) # RH_X = int(numbers[0]['keypoints'][30]) RH_Y = int(point_results[10][1].item()) # 以双眼间距的两倍作为参照 Leye_x = int(point_results[1][0].item()) Leye_y = int(point_results[1][1].item()) Reye_x = int(point_results[2][0].item()) Reye_y = int(point_results[2][1].item()) len = int(math.sqrt(math.pow(Leye_x - Reye_x, 2) + math.pow(Leye_y - Reye_y, 2))) * 2 # 判断姿势 pose = 0 if LH_Y - LE_Y >= len and LE_Y - LS_Y >= len and RH_Y - RE_Y >= len and RE_Y - RS_Y >= len: pose = 1 # 双垂 print('---------------------------双垂--------------------------') if LE_Y - LH_Y >= len and abs(LE_Y - LS_Y) <= len and RE_Y - RH_Y >= len and abs(RE_Y - RS_Y) <= len: pose = 2 # 双平举 print('---------------------------双平举--------------------------') if LS_Y - LE_Y >= len and LE_Y - LH_Y >= len and RS_Y - RE_Y >= len and RE_Y - RH_Y >= len: pose = 3 # 双高举 print('---------------------------双高举--------------------------') if abs(LH_Y - LE_Y) <= len and abs(LE_Y - LS_Y) <= len and abs(RH_Y - RE_Y) <= len and abs(RE_Y - RS_Y) <= len: pose = 4 # 双伸 print('---------------------------双伸--------------------------') if abs(LH_Y - LE_Y) <= len and abs(LE_Y - LS_Y) <= len and RE_Y - RH_Y >= len and abs(RE_Y - RS_Y) <= len: pose = 5 # 左伸右平举 print('---------------------------左伸右平举--------------------------') if abs(LH_Y - LE_Y) <= len and abs(LE_Y - LS_Y) <= len and RH_Y - RE_Y >= len and RE_Y - RS_Y >= len: pose = 6 # 左伸右垂 print('---------------------------左伸右垂--------------------------') if LE_Y - LH_Y >= len and abs(LE_Y - LS_Y) <= len and abs(RH_Y - RE_Y) <= len and abs(RE_Y - RS_Y) <= len: pose = 7 # 左平举右伸 print('---------------------------左平举右伸--------------------------') if LH_Y - LE_Y >= len and LE_Y - LS_Y >= len and abs(RH_Y - RE_Y) <= len and abs(RE_Y - RS_Y) <= len: pose = 8 # 左垂右伸 print('---------------------------左垂右伸--------------------------') if LS_Y - LE_Y >= len and LE_Y - LH_Y >= len and RH_Y - RE_Y >= len and RE_Y - RS_Y >= len: pose = 9 # 左高举右垂 print('---------------------------左高举右垂--------------------------') if LH_Y - LE_Y >= len and LE_Y - LS_Y >= len and RS_Y - RE_Y >= len and RE_Y - RH_Y >= len: pose = 10 # 右高举左垂 print('---------------------------右高举左垂--------------------------') else: pass # 绘制关键点可视化 # 0鼻子,1左眼,2右眼,3左耳,4右耳,5左肩,6右肩,7左肘,8右肘,9左腕,10右腕,11左臀,12右臀,13左膝,14右膝,15左踝,16右踝 point_list = [(int(point_results[0][0].item()), int(point_results[0][1].item())), (int(point_results[1][0].item()), int(point_results[1][1].item())), (int(point_results[2][0].item()), int(point_results[2][1].item())), (int(point_results[3][0].item()), int(point_results[3][1].item())), (int(point_results[4][0].item()), int(point_results[4][1].item())), (int(point_results[5][0].item()), int(point_results[5][1].item())), (int(point_results[6][0].item()), int(point_results[6][1].item())), (int(point_results[7][0].item()), int(point_results[7][1].item())), (int(point_results[8][0].item()), int(point_results[8][1].item())), (int(point_results[9][0].item()), int(point_results[9][1].item())), (int(point_results[10][0].item()), int(point_results[10][1].item())), (int(point_results[11][0].item()), int(point_results[11][1].item())), (int(point_results[12][0].item()), int(point_results[12][1].item())), (int(point_results[13][0].item()), int(point_results[13][1].item())), (int(point_results[14][0].item()), int(point_results[14][1].item())), (int(point_results[15][0].item()), int(point_results[15][1].item())), (int(point_results[16][0].item()), int(point_results[16][1].item()))] img = cv2.imread(self.img_path + 'frame.jpg') for point in point_list: cv2.circle(img, point, 1, (0, 0, 255), 4) # 绘制关键点连线 cv2.line(img, point_list[0], point_list[1], (0, 255, 0), 1, 4) cv2.line(img, point_list[0], point_list[2], (0, 255, 0), 1, 4) cv2.line(img, point_list[1], point_list[3], (0, 255, 0), 1, 4) cv2.line(img, point_list[2], point_list[4], (0, 255, 0), 1, 4) cv2.line(img, point_list[9], point_list[7], (0, 255, 0), 1, 4) cv2.line(img, point_list[7], point_list[5], (0, 255, 0), 1, 4) cv2.line(img, point_list[5], point_list[6], (0, 255, 0), 1, 4) cv2.line(img, point_list[6], point_list[8], (0, 255, 0), 1, 4) cv2.line(img, point_list[8], point_list[10], (0, 255, 0), 1, 4) cv2.line(img, point_list[5], point_list[11], (0, 255, 0), 1, 4) cv2.line(img, point_list[6], point_list[12], (0, 255, 0), 1, 4) cv2.line(img, point_list[11], point_list[12], (0, 255, 0), 1, 4) cv2.line(img, point_list[11], point_list[13], (0, 255, 0), 1, 4) cv2.line(img, point_list[13], point_list[15], (0, 255, 0), 1, 4) cv2.line(img, point_list[12], point_list[14], (0, 255, 0), 1, 4) cv2.line(img, point_list[14], point_list[16], (0, 255, 0), 1, 4) # cv2.imshow('AlphaPose', img) # cv2.waitKey(1) return pose,img # 删除文件函数,用于清空文件夹内图像 def del_files(self,path_file): ls = os.listdir(path_file) for i in ls: f_path = os.path.join(path_file, i) # 判断是否是一个目录,若是,则递归删除 if os.path.isdir(f_path): self.del_files(f_path) else: os.remove(f_path)