/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #ifndef FLANN_ALL_INDICES_H_ #define FLANN_ALL_INDICES_H_ #include "FLANN/general.h" #include "FLANN/algorithms/nn_index.h" #include "FLANN/algorithms/kdtree_index.h" #include "FLANN/algorithms/kdtree_single_index.h" #include "FLANN/algorithms/kmeans_index.h" #include "FLANN/algorithms/composite_index.h" #include "FLANN/algorithms/linear_index.h" #include "FLANN/algorithms/hierarchical_clustering_index.h" #include "FLANN/algorithms/lsh_index.h" #include "FLANN/algorithms/autotuned_index.h" #ifdef FLANN_USE_CUDA #include "FLANN/algorithms/kdtree_cuda_3d_index.h" #endif namespace flann { /** * enable_if sfinae helper */ template<bool, typename T = void> struct enable_if{}; template<typename T> struct enable_if<true,T> { typedef T type; }; /** * disable_if sfinae helper */ template<bool, typename T> struct disable_if{ typedef T type; }; template<typename T> struct disable_if<true,T> { }; /** * Check if two type are the same */ template <typename T, typename U> struct same_type { enum {value = false}; }; template<typename T> struct same_type<T,T> { enum {value = true}; }; #define HAS_MEMBER(member) \ template<typename T> \ struct member { \ typedef char No; \ typedef long Yes; \ template<typename C> static Yes test( typename C::member* ); \ template<typename C> static No test( ... ); \ enum { value = sizeof (test<T>(0))==sizeof(Yes) }; \ }; HAS_MEMBER(needs_kdtree_distance) HAS_MEMBER(needs_vector_space_distance) HAS_MEMBER(is_kdtree_distance) HAS_MEMBER(is_vector_space_distance) struct DummyDistance { typedef float ElementType; typedef float ResultType; template <typename Iterator1, typename Iterator2> ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const { return ResultType(0); } template <typename U, typename V> inline ResultType accum_dist(const U& a, const V& b, int) const { return ResultType(0); } }; /** * Checks if an index and a distance can be used together */ template<template <typename> class Index, typename Distance, typename ElemType> struct valid_combination { static const bool value = same_type<ElemType,typename Distance::ElementType>::value && (!needs_kdtree_distance<Index<DummyDistance> >::value || is_kdtree_distance<Distance>::value) && (!needs_vector_space_distance<Index<DummyDistance> >::value || is_kdtree_distance<Distance>::value || is_vector_space_distance<Distance>::value); }; /********************************************************* * Create index **********************************************************/ template <template<typename> class Index, typename Distance, typename T> inline NNIndex<Distance>* create_index_(flann::Matrix<T> data, const flann::IndexParams& params, const Distance& distance, typename enable_if<valid_combination<Index,Distance,T>::value,void>::type* = 0) { return new Index<Distance>(data, params, distance); } template <template<typename> class Index, typename Distance, typename T> inline NNIndex<Distance>* create_index_(flann::Matrix<T> data, const flann::IndexParams& params, const Distance& distance, typename disable_if<valid_combination<Index,Distance,T>::value,void>::type* = 0) { return NULL; } template<typename Distance> inline NNIndex<Distance>* create_index_by_type(const flann_algorithm_t index_type, const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance) { typedef typename Distance::ElementType ElementType; NNIndex<Distance>* nnIndex; switch (index_type) { case FLANN_INDEX_LINEAR: nnIndex = create_index_<LinearIndex,Distance,ElementType>(dataset, params, distance); break; case FLANN_INDEX_KDTREE_SINGLE: nnIndex = create_index_<KDTreeSingleIndex,Distance,ElementType>(dataset, params, distance); break; case FLANN_INDEX_KDTREE: nnIndex = create_index_<KDTreeIndex,Distance,ElementType>(dataset, params, distance); break; //! #define this symbol before including flann.h to enable GPU search algorithms. But you have //! to link libflann_cuda then! #ifdef FLANN_USE_CUDA case FLANN_INDEX_KDTREE_CUDA: nnIndex = create_index_<KDTreeCuda3dIndex,Distance,ElementType>(dataset, params, distance); break; #endif case FLANN_INDEX_KMEANS: nnIndex = create_index_<KMeansIndex,Distance,ElementType>(dataset, params, distance); break; case FLANN_INDEX_COMPOSITE: nnIndex = create_index_<CompositeIndex,Distance,ElementType>(dataset, params, distance); break; case FLANN_INDEX_AUTOTUNED: nnIndex = create_index_<AutotunedIndex,Distance,ElementType>(dataset, params, distance); break; case FLANN_INDEX_HIERARCHICAL: nnIndex = create_index_<HierarchicalClusteringIndex,Distance,ElementType>(dataset, params, distance); break; case FLANN_INDEX_LSH: nnIndex = create_index_<LshIndex,Distance,ElementType>(dataset, params, distance); break; default: throw FLANNException("Unknown index type"); } if (nnIndex==NULL) { throw FLANNException("Unsupported index/distance combination"); } return nnIndex; } } #endif /* FLANN_ALL_INDICES_H_ */