/* Copyright (c) 2006, Michael Kazhdan and Matthew Bolitho All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the Johns Hopkins University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ ////////////////// // FunctionData // ////////////////// template<int Degree,class Real> FunctionData<Degree,Real>::FunctionData(void) { dotTable=dDotTable=d2DotTable=NULL; valueTables=dValueTables=NULL; res=0; } template<int Degree,class Real> FunctionData<Degree,Real>::~FunctionData(void) { if(res) { if( dotTable) delete[] dotTable; if( dDotTable) delete[] dDotTable; if(d2DotTable) delete[] d2DotTable; if( valueTables) delete[] valueTables; if(dValueTables) delete[] dValueTables; } dotTable=dDotTable=d2DotTable=NULL; valueTables=dValueTables=NULL; res=0; } template<int Degree,class Real> #if BOUNDARY_CONDITIONS void FunctionData<Degree,Real>::set( const int& maxDepth , const PPolynomial<Degree>& F , const int& normalize , bool useDotRatios , bool reflectBoundary ) #else // !BOUNDARY_CONDITIONS void FunctionData<Degree,Real>::set(const int& maxDepth,const PPolynomial<Degree>& F,const int& normalize , bool useDotRatios ) #endif // BOUNDARY_CONDITIONS { this->normalize = normalize; this->useDotRatios = useDotRatios; #if BOUNDARY_CONDITIONS this->reflectBoundary = reflectBoundary; #endif // BOUNDARY_CONDITIONS depth = maxDepth; res = BinaryNode<double>::CumulativeCenterCount( depth ); res2 = (1<<(depth+1))+1; baseFunctions = new PPolynomial<Degree+1>[res]; // Scale the function so that it has: // 0] Value 1 at 0 // 1] Integral equal to 1 // 2] Square integral equal to 1 switch( normalize ) { case 2: baseFunction=F/sqrt((F*F).integral(F.polys[0].start,F.polys[F.polyCount-1].start)); break; case 1: baseFunction=F/F.integral(F.polys[0].start,F.polys[F.polyCount-1].start); break; default: baseFunction=F/F(0); } dBaseFunction = baseFunction.derivative(); #if BOUNDARY_CONDITIONS leftBaseFunction = baseFunction + baseFunction.shift( -1 ); rightBaseFunction = baseFunction + baseFunction.shift( 1 ); dLeftBaseFunction = leftBaseFunction.derivative(); dRightBaseFunction = rightBaseFunction.derivative(); #endif // BOUNDARY_CONDITIONS double c1,w1; for( int i=0 ; i<res ; i++ ) { BinaryNode< double >::CenterAndWidth( i , c1 , w1 ); #if BOUNDARY_CONDITIONS if( reflectBoundary ) { int d , off; BinaryNode< double >::DepthAndOffset( i , d , off ); if ( off==0 ) baseFunctions[i] = leftBaseFunction.scale( w1 ).shift( c1 ); else if( off==((1<<d)-1) ) baseFunctions[i] = rightBaseFunction.scale( w1 ).shift( c1 ); else baseFunctions[i] = baseFunction.scale( w1 ).shift( c1 ); } else baseFunctions[i] = baseFunction.scale(w1).shift(c1); #else // !BOUNDARY_CONDITIONS baseFunctions[i] = baseFunction.scale(w1).shift(c1); #endif // BOUNDARY_CONDITIONS // Scale the function so that it has L2-norm equal to one switch( normalize ) { case 2: baseFunctions[i]/=sqrt(w1); break; case 1: baseFunctions[i]/=w1; break; } } } template<int Degree,class Real> void FunctionData<Degree,Real>::setDotTables( const int& flags ) { clearDotTables( flags ); int size; size = ( res*res + res )>>1; if( flags & DOT_FLAG ) { dotTable = new Real[size]; memset( dotTable , 0 , sizeof(Real)*size ); } if( flags & D_DOT_FLAG ) { dDotTable = new Real[size]; memset( dDotTable , 0 , sizeof(Real)*size ); } if( flags & D2_DOT_FLAG ) { d2DotTable = new Real[size]; memset( d2DotTable , 0 , sizeof(Real)*size ); } double t1 , t2; t1 = baseFunction.polys[0].start; t2 = baseFunction.polys[baseFunction.polyCount-1].start; for( int i=0 ; i<res ; i++ ) { double c1 , c2 , w1 , w2; BinaryNode<double>::CenterAndWidth( i , c1 , w1 ); #if BOUNDARY_CONDITIONS int d1 , d2 , off1 , off2; BinaryNode< double >::DepthAndOffset( i , d1 , off1 ); int boundary1 = 0; if ( reflectBoundary && off1==0 ) boundary1 = -1; else if( reflectBoundary && off1==( (1<<d1)-1 ) ) boundary1 = 1; #endif // BOUNDARY_CONDITIONS double start1 = t1 * w1 + c1; double end1 = t2 * w1 + c1; for( int j=0 ; j<=i ; j++ ) { BinaryNode<double>::CenterAndWidth( j , c2 , w2 ); #if BOUNDARY_CONDITIONS BinaryNode< double >::DepthAndOffset( j , d2 , off2 ); int boundary2 = 0; if ( reflectBoundary && off2==0 ) boundary2 = -1; else if( reflectBoundary && off2==( (1<<d2)-1 ) ) boundary2 = 1; #endif // BOUNDARY_CONDITIONS int idx = SymmetricIndex( i , j ); double start = t1 * w2 + c2; double end = t2 * w2 + c2; #if BOUNDARY_CONDITIONS if( reflectBoundary ) { if( start<0 ) start = 0; if( start>1 ) start = 1; if( end <0 ) end = 0; if( end >1 ) end = 1; } #endif // BOUNDARY_CONDITIONS if( start< start1 ) start = start1; if( end > end1 ) end = end1; if( start>= end ) continue; #if BOUNDARY_CONDITIONS Real dot = dotProduct( c1 , w1 , c2 , w2 , boundary1 , boundary2 ); #else // !BOUNDARY_CONDITIONS Real dot = dotProduct( c1 , w1 , c2 , w2 ); #endif // BOUNDARY_CONDITIONS if( fabs(dot)<1e-15 ) continue; if( flags & DOT_FLAG ) dotTable[idx]=dot; if( useDotRatios ) { #if BOUNDARY_CONDITIONS if( flags & D_DOT_FLAG ) dDotTable[idx] = -dDotProduct( c1 , w1 , c2 , w2 , boundary1 , boundary2 ) / dot; if( flags & D2_DOT_FLAG ) d2DotTable[idx] = d2DotProduct( c1 , w1 , c2 , w2 , boundary1 , boundary2 ) / dot; #else // !BOUNDARY_CONDITIONS if( flags & D_DOT_FLAG ) dDotTable[idx] = -dDotProduct(c1,w1,c2,w2)/dot; if( flags & D2_DOT_FLAG ) d2DotTable[idx] = d2DotProduct(c1,w1,c2,w2)/dot; #endif // BOUNDARY_CONDITIONS } else { #if BOUNDARY_CONDITIONS if( flags & D_DOT_FLAG ) dDotTable[idx] = dDotProduct( c1 , w1 , c2 , w2 , boundary1 , boundary2 ); if( flags & D2_DOT_FLAG ) d2DotTable[idx] = d2DotProduct( c1 , w1 , c2 , w2 , boundary1 , boundary2 ); #else // !BOUNDARY_CONDTIONS if( flags & D_DOT_FLAG ) dDotTable[idx] = dDotProduct(c1,w1,c2,w2); if( flags & D2_DOT_FLAG ) d2DotTable[idx] = d2DotProduct(c1,w1,c2,w2); #endif // BOUNDARY_CONDITIONS } } } } template<int Degree,class Real> void FunctionData<Degree,Real>::clearDotTables( const int& flags ) { if((flags & DOT_FLAG) && dotTable) { delete[] dotTable; dotTable=NULL; } if((flags & D_DOT_FLAG) && dDotTable) { delete[] dDotTable; dDotTable=NULL; } if((flags & D2_DOT_FLAG) && d2DotTable) { delete[] d2DotTable; d2DotTable=NULL; } } template<int Degree,class Real> void FunctionData<Degree,Real>::setValueTables( const int& flags , const double& smooth ) { clearValueTables(); if( flags & VALUE_FLAG ) valueTables = new Real[res*res2]; if( flags & D_VALUE_FLAG ) dValueTables = new Real[res*res2]; PPolynomial<Degree+1> function; PPolynomial<Degree> dFunction; for( int i=0 ; i<res ; i++ ) { if(smooth>0) { function=baseFunctions[i].MovingAverage(smooth); dFunction=baseFunctions[i].derivative().MovingAverage(smooth); } else { function=baseFunctions[i]; dFunction=baseFunctions[i].derivative(); } for( int j=0 ; j<res2 ; j++ ) { double x=double(j)/(res2-1); if(flags & VALUE_FLAG){ valueTables[j*res+i]=Real( function(x));} if(flags & D_VALUE_FLAG){dValueTables[j*res+i]=Real(dFunction(x));} } } } template<int Degree,class Real> void FunctionData<Degree,Real>::setValueTables(const int& flags,const double& valueSmooth,const double& normalSmooth){ clearValueTables(); if(flags & VALUE_FLAG){ valueTables=new Real[res*res2];} if(flags & D_VALUE_FLAG){dValueTables=new Real[res*res2];} PPolynomial<Degree+1> function; PPolynomial<Degree> dFunction; for(int i=0;i<res;i++){ if(valueSmooth>0) { function=baseFunctions[i].MovingAverage(valueSmooth);} else { function=baseFunctions[i];} if(normalSmooth>0) {dFunction=baseFunctions[i].derivative().MovingAverage(normalSmooth);} else {dFunction=baseFunctions[i].derivative();} for(int j=0;j<res2;j++){ double x=double(j)/(res2-1); if(flags & VALUE_FLAG){ valueTables[j*res+i]=Real( function(x));} if(flags & D_VALUE_FLAG){dValueTables[j*res+i]=Real(dFunction(x));} } } } template<int Degree,class Real> void FunctionData<Degree,Real>::clearValueTables(void){ if( valueTables){delete[] valueTables;} if(dValueTables){delete[] dValueTables;} valueTables=dValueTables=NULL; } #if BOUNDARY_CONDITIONS template<int Degree,class Real> Real FunctionData<Degree,Real>::dotProduct( const double& center1 , const double& width1 , const double& center2 , const double& width2 , int boundary1 , int boundary2 ) const { const PPolynomial< Degree > *b1 , *b2; if ( boundary1==-1 ) b1 = & leftBaseFunction; else if( boundary1== 0 ) b1 = & baseFunction; else if( boundary1== 1 ) b1 = &rightBaseFunction; if ( boundary2==-1 ) b2 = & leftBaseFunction; else if( boundary2== 0 ) b2 = & baseFunction; else if( boundary2== 1 ) b2 = &rightBaseFunction; double r=fabs( baseFunction.polys[0].start ); switch( normalize ) { case 2: return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1/sqrt(width1*width2)); case 1: return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1/(width1*width2)); default: return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1); } } template<int Degree,class Real> Real FunctionData<Degree,Real>::dDotProduct( const double& center1 , const double& width1 , const double& center2 , const double& width2 , int boundary1 , int boundary2 ) const { const PPolynomial< Degree-1 > *b1; const PPolynomial< Degree > *b2; if ( boundary1==-1 ) b1 = & dLeftBaseFunction; else if( boundary1== 0 ) b1 = & dBaseFunction; else if( boundary1== 1 ) b1 = &dRightBaseFunction; if ( boundary2==-1 ) b2 = & leftBaseFunction; else if( boundary2== 0 ) b2 = & baseFunction; else if( boundary2== 1 ) b2 = & rightBaseFunction; double r=fabs(baseFunction.polys[0].start); switch(normalize){ case 2: return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/sqrt(width1*width2)); case 1: return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/(width1*width2)); default: return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)); } } template<int Degree,class Real> Real FunctionData<Degree,Real>::d2DotProduct( const double& center1 , const double& width1 , const double& center2 , const double& width2 , int boundary1 , int boundary2 ) const { const PPolynomial< Degree-1 > *b1 , *b2; if ( boundary1==-1 ) b1 = & dLeftBaseFunction; else if( boundary1== 0 ) b1 = & dBaseFunction; else if( boundary1== 1 ) b1 = &dRightBaseFunction; if ( boundary2==-1 ) b2 = & dLeftBaseFunction; else if( boundary2== 0 ) b2 = & dBaseFunction; else if( boundary2== 1 ) b2 = &dRightBaseFunction; double r=fabs(baseFunction.polys[0].start); switch( normalize ) { case 2: return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2/sqrt(width1*width2)); case 1: return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2/(width1*width2)); default: return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2); } } #else // !BOUNDARY_CONDITIONS template<int Degree,class Real> Real FunctionData<Degree,Real>::dotProduct(const double& center1,const double& width1,const double& center2,const double& width2) const{ double r=fabs(baseFunction.polys[0].start); switch( normalize ) { case 2: return Real((baseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1/sqrt(width1*width2)); case 1: return Real((baseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1/(width1*width2)); default: return Real((baseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1); } } template<int Degree,class Real> Real FunctionData<Degree,Real>::dDotProduct(const double& center1,const double& width1,const double& center2,const double& width2) const{ double r=fabs(baseFunction.polys[0].start); switch(normalize){ case 2: return Real((dBaseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/sqrt(width1*width2)); case 1: return Real((dBaseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/(width1*width2)); default: return Real((dBaseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)); } } template<int Degree,class Real> Real FunctionData<Degree,Real>::d2DotProduct(const double& center1,const double& width1,const double& center2,const double& width2) const{ double r=fabs(baseFunction.polys[0].start); switch(normalize){ case 2: return Real((dBaseFunction*dBaseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2/sqrt(width1*width2)); case 1: return Real((dBaseFunction*dBaseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2/(width1*width2)); default: return Real((dBaseFunction*dBaseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2); } } #endif // BOUNDARY_CONDITIONS template<int Degree,class Real> inline int FunctionData<Degree,Real>::SymmetricIndex( const int& i1 , const int& i2 ) { if( i1>i2 ) return ((i1*i1+i1)>>1)+i2; else return ((i2*i2+i2)>>1)+i1; } template<int Degree,class Real> inline int FunctionData<Degree,Real>::SymmetricIndex( const int& i1 , const int& i2 , int& index ) { if( i1<i2 ) { index = ((i2*i2+i2)>>1)+i1; return 1; } else{ index = ((i1*i1+i1)>>1)+i2; return 0; } }