/* Copyright (C) 2014 Jerome Revaud This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see */ #include "deep_matching.h" #include "std.h" #include "conv.h" #include "maxfilter.h" // return size of atomic patches int get_atomic_patch_size( const dm_params_t* params ) { int upsize = (1 << params->prior_img_downscale); return 4*upsize; } // crop dimensions to a multiple of patch_size void get_source_shape( const int width, const int height, const int patch_size, int* res ) { // crop the reference image to a multiple of patch size res[0] = patch_size * int(width / patch_size); res[1] = patch_size * int(height / patch_size); } // extract pixel descriptor for both images void extract_image_desc( image_t* img0, image_t* img1, const dm_params_t* params, float_layers** desc0, float_layers** desc1 ) { // slightly reduce img0 size to fit the patch tiling int patch_size = get_atomic_patch_size( params ); int size[2]; // = {width, height} get_source_shape( img0->width, img0->height, patch_size, size ); image_crop(img0, size[0], size[1]); // extract gradient-based information *desc0 = extract_desc( img0, ¶ms->desc_params, params->n_thread ); *desc1 = extract_desc( img1, ¶ms->desc_params, params->n_thread ); } void avgpool2( float_layers* hog, const dm_params_t* params ) { int niter = params->prior_img_downscale; while(niter--) { float_layers res = empty_layers(float,hog->tx/2,hog->ty/2,hog->tz); _avgpool2(hog,&res,params->n_thread); // replace hog by res free(hog->pixels); *hog = res; } } /* compute the grid of parent cell position, and their connection to children cells cells can be half-overlapping if =1 forces the grid spacing if >0 */ void prepare_big_cells( const int imshape[2], int cell_size, int overlap, int child_overlap, int_cube* child_grid, float_image* child_norms, int dense_step, int_cube* grid, int_cube* children, float_image* norms ) { int offset, step, gtx, gty; if( dense_step ) { step = dense_step; offset = 0; // we do not care if the patches are overlapping outside the image #define grid_size(imsize) (1+imsize/step) gtx = grid_size(imshape[0]); gty = grid_size(imshape[1]); #undef grid_size } else { // we want patches fully included in the image offset = cell_size/2; step = cell_size/(overlap+1); #define grid_size(imsize) (1+MAX(0,imsize-2*offset)/step) gtx = grid_size(imshape[0]); gty = grid_size(imshape[1]); #undef grid_size } assert(!grid->pixels); *grid = empty_cube(int,gtx,gty,2); assert(0<=overlap && overlap<=1); int nc = pow2(2+child_overlap); // number of children per cell if(child_grid) { assert(!norms->pixels); *norms = image_like(float,grid); assert(!children->pixels); *children = empty_cube(int,gtx,gty,nc); } _prepare_big_cells( cell_size, offset, step, child_grid, child_norms, grid, children, norms ); } void sample_patches( float_layers* hog, int_cube* pos, int patch_size, int f, float norm, int n_thread, float_image* patches, float_array* norms ) { assert(norm>0); const int npos = pos->tx*pos->ty; int_image new_pos = empty_image(int,2,npos); for(int i=0; i<2*npos; i++) new_pos.pixels[i] = (pos->pixels[i]-patch_size/2)/f; patch_size /= f; const int nh = get_patch_desc_dim(hog,patch_size); assert(!patches->pixels); *patches = empty_image(float,nh,npos); assert(norms->tx==npos); _sample_patches( hog, NULL, &new_pos, patch_size, norm, patches, norms, n_thread ); free(new_pos.pixels); } const float trans_inv = 0.9f; void convolve_atomic_patches( float_layers* source, float_layers* target, const dm_params_t* params, res_scale* first_level ) { const int extend = 1; // slightly spatially extend response maps const float norm = 1; // renorm patches const int f = first_level->f; // scale factor w.r.t. original image const int psize = first_level->patch_size; // current patch size // first, sample patches float_image patches = {0}; assert(!first_level->norms.pixels); first_level->norms = image_like(float, &first_level->grid); float_array norms_arr = {first_level->norms.pixels, (int)IMG_SIZE(&first_level->norms)}; sample_patches( source, &first_level->grid, psize, f, norm, params->n_thread, &patches, &norms_arr ); //hash_image(&patches) // rectify the norm to a boolean (0 or 1) (useless ?) first_level->assign = empty_array(int,norms_arr.tx); int n=0, tx = patches.tx; for(int i=0; i0; // eliminate zero-norm patches if( norms_arr.pixels[i] ) { if( n < i ) // copy memcpy( patches.pixels + n*tx, patches.pixels + i*tx, tx*sizeof(float)); first_level->assign.pixels[i] = n++; } else first_level->assign.pixels[i] = -1; // convolution is not fully invariant to the image border: // blank cells outside the image are a bit disadvantageous if( norms_arr.pixels[i] == 0 ) norms_arr.pixels[i] = 1-trans_inv; } patches.ty = n; // update new number of valid patches //hash_image(&first_level->norms) //hash_image(&patches) // compute the first level convolutions fastconv( &patches, target, psize/f, params->ngh_rad/f, extend, norm, params->n_thread, first_level ); free(patches.pixels); } int_image* maxpool3_and_subsample2( float_layers* hog, int true_shape[2], int_image* offsets, float_layers* res, int nt ) { assert(!res->pixels); if ( offsets->pixels == NULL ) assert( hog->tx == true_shape[0] && hog->ty == true_shape[1] ); // set downsampled size true_shape[0] = (true_shape[0]+1)/2; true_shape[1] = (true_shape[1]+1)/2; assert( true_shape[0]>0 && true_shape[1]>0 ); if ( offsets->pixels == NULL ) { // joint max-pooling and subsampling *res = empty_layers(float, true_shape[0], true_shape[1], hog->tz); _max_filter_3_and_subsample_layers( hog, res, nt ); return NULL; } else { // with offsets float_layers maxpooled_hog = layers_like(float, hog); _max_filter_3_layers( hog, &maxpooled_hog, nt ); //CHECK_MAPS(&maxpooled_hog); // slightly bigger, so that mininum size always >= 2 int width = (hog->tx+2)/2; int height = (hog->ty+2)/2; *res = empty_layers(float, width, height, hog->tz); _subsample2_offset( &maxpooled_hog, offsets, res, nt ); free(maxpooled_hog.pixels); // compute new offsets int_image* res_offsets = NEW(int_image); *res_offsets = image_like(int, offsets); for(long i=0; ipixels[i] = (int)floor( offsets->pixels[i]/2.f ); return res_offsets; } } #define CHECK_MAPS(rmaps) assert(min_array_f((rmaps)->pixels,LAYERS_SIZE(rmaps))>=0 && \ max_array_f((rmaps)->pixels,LAYERS_SIZE(rmaps))<=1.001) /* aggregate response maps of children patches to form response maps of parent patches */ int sparse_conv( int_cube* children, int_array* children_assign, float_image* child_norms, int true_patch_size, float_layers* map, int_image* offsets, int nt, res_scale* res ) { float_layers ext_map; if( MIN(map->tx,map->ty) < 5 ) { ext_map = zeros_layers(float,MAX(5,map->tx),MAX(5,map->ty),map->tz); for(int l=0; ltz; l++) for(int j=0; jty; j++) for(int i=0; itx; i++) ext_map.pixels[(l*ext_map.ty + j)*ext_map.tx + i] = map->pixels[(l*map->ty + j)*map->tx + i]; map = &ext_map; res->true_shape[0] = ext_map.tx; res->true_shape[1] = ext_map.ty; } int_image _children = reshape_z_xy(int, &res->children); if( offsets ) res->offsets = empty_image(int, 2, _children.ty); assert(!res->res_map.pixels); res->res_map = empty_layers(float, map->tx, map->ty, _children.ty); int gap = true_patch_size / 4; assert(gap>0); float_array _norms = reshape_xy(float, &res->norms); float_array _child_norms = reshape_xy(float, child_norms); // allocate useless assign res->assign = empty_array(int, res->res_map.tz); for(int i=0; iassign.tx; i++) res->assign.pixels[i] = i; int_array* _assign = NULL; int_array* _ch_assign = children_assign->pixels ? children_assign : NULL; int n = _sparse_conv( &_children, _ch_assign, gap, trans_inv, map, offsets, &_child_norms, &_norms, _assign, &res->res_map, &res->offsets, nt ); //CHECK_MAPS(res); if(map==&ext_map) free(ext_map.pixels); return n; } res_scale new_pyramid_level(int f, int psize) { res_scale res = {0}; // initialize everything to 0/NULL res.f = f; // subsampling factor with respect to original image size res.patch_size = psize; // patch size in original image coordinates return res; } // Compute the multi-scale pyramid response void compute_matching_pyr( float_layers* source, float_layers* target, const dm_params_t* params, matching_pyramid_t& res_maps ) { const int src_shape[2] = {source->tx, source->ty}; int L = 0; // current pyramid level const int atomic_psize = get_atomic_patch_size( params ); int psize = atomic_psize; // will grow by a factor 2 at each level int f = psize/4; // initial scaling factor // subsample if needed avgpool2( source, params ); avgpool2( target, params ); //hash_layers(source) //hash_layers(target) res_maps.clear(); res_maps.push_back(new_pyramid_level(f,psize)); res_scale *child, *last = &res_maps[res_maps.size()-1]; // compute the initial patches in source image if( params->verbose ) std_printf("layer %d, patch_size = %dx%d\n", L, psize, psize); prepare_big_cells( src_shape, psize, params->overlapgrid, NULL, NULL ); //hash_cube(&last->grid) //hash_layers(source) convolve_atomic_patches( source, target, params, last ); //hash_layers(&last->res_map) if( params->verbose ) std_printf("remaining %ld big cells (actually, %d are unique)\n", IMG_SIZE(&last->grid), last->res_map.tz); // non-linear correction if( params->nlpow>0 ) fastipow( &last->res_map, params->nlpow, params->n_thread ); //hash_layers(&last->res_map) const int dense_step = params->subsample_ref ? 0 : psize/(1+(params->overlap<1)); // aggregate patches for all subsequent levels while( 2*psize <= MIN(params->max_psize, MAX(src_shape[0], src_shape[1])) ) { L++; f *= 2; psize *= 2; res_maps.push_back(new_pyramid_level(f,psize)); child = &res_maps[res_maps.size()-2]; // previous level last = &res_maps[res_maps.size()-1]; // current level if( params->verbose ) std_printf("layer %d, patch_size = %dx%d\n", L, psize, psize); // max pooling + subsampling //CHECK_MAPS(&child->res_map); last->true_shape[0] = child->true_shape[0]; // will be modified in subsampled2() last->true_shape[1] = child->true_shape[1]; float_layers subs_res_map = {0}; int_image* offsets = maxpool3_and_subsample2( &child->res_map, last->true_shape, &child->offsets, &subs_res_map, params->n_thread ); //CHECK_MAPS(&subs_res_map); // build the set of patches at this scale prepare_big_cells( src_shape, psize, params->overlapoverlapgrid, &child->norms, dense_step, &last->grid, &last->children, &last->norms ); //DA(last->true_shape,2) //hash_cube(&last->grid) //hash_image(&last->norms) //hash_cube(&last->children) // aggregate children response maps to form parent response maps sparse_conv( &last->children, &child->assign, &child->norms, psize/f, &subs_res_map, offsets, params->n_thread, last ); free(subs_res_map.pixels); free_image(offsets); //CHECK_MAPS(&last->res_map); if( params->verbose ) std_printf("remaining %ld big cells (actually, %d are unique)\n", IMG_SIZE(&last->grid), last->res_map.tz); // non-linear correction if( params->nlpow>0 ) fastipow(&last->res_map, params->nlpow, params->n_thread ); //hash_layers(&last->res_map) } } void free_matching_pyramid( matching_pyramid_t& res_maps ) { unsigned int i; for(i=0; i0); // descending order } #else static int arg_sort_maxima(const void* a, const void* b, void* arr) { float diff = ((float*)arr)[5*(*(int*)a)+4] - ((float*)arr)[5*(*(int*)b)+4]; return (diff<0) - (diff>0); // descending order } #endif void reorder_rows( int_image* img, int_array* order ) { assert(order->tx==img->ty); const int tx = img->tx; int_image res = image_like(int, img); for(int i=0; itx; i++) memcpy(res.pixels + i*tx, img->pixels+order->pixels[i]*tx, tx*sizeof(int)); free(img->pixels); *img = res; } // return points corresponding to patch matches int_image* find_optimal_matchings( matching_pyramid_t& mp, const dm_params_t* params ) { const int nobordure = 0; int_image* maxima = NEW(int_image); int_array order = {0}; if( params->maxima_mode ) { // normal process: maxima detection float th=0; int check_parents=false, check_children=false; float_array sc_maxima = empty_array(float,int(mp.size())); for(unsigned int i=0; imin_level, params->nlpow, check_parents, check_children, nobordure, maxima, params->n_thread ); free(sc_maxima.pixels); order = empty_array(int,maxima->ty); for(int i=0; ity; i++) order.pixels[i] = maxima->ty-1-i; // last first } else { // we just analyse all cells at the top level const float_layers* rmap = &mp[mp.size()-1].res_map; const int tx = rmap->tx, txy=tx*rmap->ty; *maxima = empty_image(int, 5, (int)LAYERS_SIZE(rmap)); for(int i=0; ity; i++) { int* row = maxima->pixels + 5*i; row[0] = mp.size()-1; // pyramid level row[1] = i/txy; // layer number row[2] = i%tx; // x position row[3] = (i%txy)/tx; // y position ((float*)row)[4] = rmap->pixels[i]; } //hash_image(maxima) order = empty_array(int,maxima->ty); for(int i=0; ity; i++) order.pixels[i] = i; #ifdef __APPLE__ qsort_r(order.pixels, maxima->ty, sizeof(int), maxima->pixels, arg_sort_maxima); #else qsort_r(order.pixels, maxima->ty, sizeof(int), arg_sort_maxima, maxima->pixels); #endif } if( params->verbose>0 ) std_printf("found %d local matches\n",maxima->ty); // reorder maxima reorder_rows( maxima, &order ); free(order.pixels); return maxima; } static inline float ptdot( const float* m, float x, float y ) { return x*m[0] + y*m[1] + m[2]; } void apply_rot( float_cube* corres, float rot[6] ) { assert( corres->tz == 6 ); const int nb = IMG_SIZE(corres); float* p = corres->pixels; for(int i=0; itx; const int n_maxima = maxima->ty; float_cube corres0 = zeros_cube(float, (src_shape[0]+step-1)/step, (src_shape[1]+step-1)/step,6); float_cube corres1 = zeros_cube(float, (target_shape[0]+step-1)/step, (target_shape[1]+step-1)/step,6); int i; // allocate temporary optimization maps for(i=0; ilow_mem && size > 1000003 ) size = 1000003; // big prime assert( size <= 2147483647 || !"try using -mem parameter"); scales[i].passed = zeros_array(float, (int)size); } #if defined(USE_OPENMP) #pragma omp parallel for schedule(static,1) num_threads(params->n_thread) #endif for(i=0; iverbose && i%100==0) std_printf("\rgathering correspondences %d%%...",100*i/n_maxima); int* m = maxima->pixels + tx*i; int level = m[0], num_map = m[1]; int x = m[2], y = m[3]; assert(levelscoring_mode ) // new mode _argmax_correspondences( scales.data(), level, num_map, x, y, ((float*)m)[4], &corres0, step, &corres1, step, i ); else // old iccv mode _argmax_correspondences_v1( scales.data(), level, num_map, x, y, m[0]*((float*)m)[4], &corres0, step, &corres1, step, i ); } // free optimization maps for(i=0; iverbose) std_printf("\n"); if( params->rot45 ) { // rectify correspondences assert( corres_out ); apply_rot( &corres0, corres_out->rot ); apply_rot( &corres1, corres_out->rot ); } // keep only reciprocal matches int nres; float* corres = _intersect_corres( &corres0, &corres1, &nres ); float_image* res = NEW(float_image); *res = (float_image){corres, 6, nres}; if( corres_out == NULL ) { free(corres0.pixels); free(corres1.pixels); } else { // save unfiltered correspondences corres_out->corres0 = corres0; corres_out->corres1 = corres1; } return res; } void eye_rot3x3( float rot[6] ) { memset( rot, 0, 6*sizeof(float)); rot[0] = rot[4] = 1; } inline float bilinear_interp(const float* img, const int tx, const int ty, float x, float y ) { if( x < 0 || x+1.001 >= tx ) return 0; // outside if( y < 0 || y+1.001 >= ty ) return 0; // outside int ix = int(x); int iy = int(y); img += ix + iy*tx; // move pointer float rx = x - ix; float ry = y - iy; return (1-ry)*((1-rx)*img[0] + rx*img[1]) + ry *((1-rx)*img[tx]+ rx*img[tx+1]); } void scale_rot3x3( float rot[6], float sc ) { for(int i=0; i<6; i++) rot[i] *= sc; } void inv_rot3x3( float rot[6], float res[6] ) { assert( fabs((rot[0]*rot[4] - rot[1]*rot[3]) - 1) < 1e-6 ); // because rot is unitary, invert == transpose res[0] = rot[0]; res[1] = rot[3]; res[3] = rot[1]; res[4] = rot[4]; res[2] = -rot[2]*rot[0] - rot[5]*rot[3]; res[5] = -rot[2]*rot[1] - rot[5]*rot[4]; } // rotate a descriptor HOG image by a given angle float_layers* rotate45( float_layers* hog, const dm_params_t* params, full_corres_t* corres_out ) { assert( corres_out ); // we need it to write rot ! const int patch_size = get_atomic_patch_size( params ); const int n_rot45 = params->rot45; if( (n_rot45 % 8) == 0 ) { // nothing to do eye_rot3x3( corres_out->rot ); return hog; } const int tx = hog->tx; const int ty = hog->ty; // rotation matrix float angle = n_rot45 * M_PI / 4; float c = cos(angle), s = sin(angle); float rot[6] = {c, -s, 0, s, c, 0}; // pt_in_original_image = rot * pt_in_rotated_image // determine center of rotation before float cx_before = tx/2.0; float cy_before = ty/2.0; // determine center of rotation after float corners[2][4] = {{0, (float)tx, (float)tx, 0}, {0, 0, (float)ty, (float)ty}}; for(int i=0; i<4; i++) { // rotate corners float x = corners[0][i], y = corners[1][i]; corners[0][i] = ptdot(rot+0, x, y); corners[1][i] = ptdot(rot+3, x, y); } int rot_size[2] = {int(0.5 + max_array_f(corners[0], 4) - min_array_f(corners[0], 4)), int(0.5 + max_array_f(corners[1], 4) - min_array_f(corners[1], 4)) }; get_source_shape( rot_size[0], rot_size[1], patch_size, rot_size ); float cx_after = rot_size[0]/2.0; float cy_after = rot_size[1]/2.0; // compute the translation rot[2] = cx_before - ptdot(rot+0, cx_after, cy_after); rot[5] = cy_before - ptdot(rot+3, cx_after, cy_after); // create result assert( hog->tz == 9 ); float_layers* rot_hog = NEW(float_layers); *rot_hog = empty_layers(float, rot_size[0], rot_size[1], 9); for(int c=0; ctz; c++) { const int src_c = (c<8) ? int((c+n_rot45+256)%8) : c; // roll channels except for last one (see hog.h) const float* f = hog->pixels + src_c * IMG_SIZE(hog); float* p = rot_hog->pixels + c * IMG_SIZE(rot_hog); for(int y=0; yrot, rot, 6*sizeof(float) ); return rot_hog; } // set default parameters void set_default_dm_params( dm_params_t* params ) { // pixel descriptor params set_default_desc_params( ¶ms->desc_params ); // general parameters params->prior_img_downscale = 1; // resolution R = 1/2^downscale, default = 1/2 params->rot45 = 0; // don't rotate the first image params->overlap = 999; // don't use overlapping patches params->subsample_ref = false; // don't subsample patches in reference image (=first image) params->nlpow = 1.4; params->ngh_rad = 0; // no limit by default params->maxima_mode = 0; // don't use maxima, just start from all top patches params->min_level = 2; // useless params->max_psize = 999; // maximum patch size params->low_mem = true; // optimize mem but then results are slightly unstable/non-reproducible params->verbose = 0; params->scoring_mode = 1; // improved scoring scheme params->n_thread = 1; // no multithreading by default } // main function float_image* deep_matching( image_t* img0, image_t* img1, const dm_params_t* params, full_corres_t* corres_out ) { // verify parameters assert(between(0,params->prior_img_downscale,3)); assert(between(0,params->overlap,999)); assert(between(0,params->subsample_ref,1)); assert(between(0.1,params->nlpow,10)); assert(between(0,params->ngh_rad,1<<16)); assert(between(0,params->maxima_mode,1)); assert(between(0,params->min_level,4)); assert(between(0,params->low_mem,1)); assert(between(0,params->scoring_mode,1)); assert(between(0,params->verbose,10)); assert(between(1,params->n_thread,128)); // extract pixel descriptors float_layers *source, *target; extract_image_desc( img0, img1, params, &source, &target ); if( corres_out ) // the first image is rotated source = rotate45( source, params, corres_out ); int src_shape[2] = {source->tx, source->ty}; assert( LAYERS_SIZE(source) > 0 ); int target_shape[2] = {target->tx, target->ty}; assert( LAYERS_SIZE(target) > 0 ); //hash_layers(source) //hash_layers(target) // compute local matchings matching_pyramid_t matching_pyr; compute_matching_pyr( source, target, params, matching_pyr ); free_layers(source); free_layers(target); //hash_layers(&matching_pyr[matching_pyr.size()-1].res_map); // find optmial matchings (maxima) int_image* maxima = find_optimal_matchings(matching_pyr, params); //hash_image(maxima); // select the best displacements (maxpool merge) float_image* corres = gather_correspondences( src_shape, target_shape, matching_pyr, maxima, params, corres_out ); //hash_image(corres); // free everything free_matching_pyramid(matching_pyr); free_layers(maxima); return corres; } void swap_first_second_img( float_cube* corres ) { assert( corres->tz == 6 ); const int nb = IMG_SIZE(corres); float* p = corres->pixels; for(int i = 0; i < nb; i++) { float a = p[0]; float b = p[1]; float c = p[2]; float d = p[3]; *p++ = c; *p++ = d; *p++ = a; *p++ = b; p += 2; } } void rescale_corres( float_cube* corres, float f0, float f1, int code ) { assert( corres->tz == 6 ); const int nb = IMG_SIZE(corres); float* p = corres->pixels; for(int i = 0; i < nb; i++) { p[0] *= f0; p[1] *= f0; p[2] *= f1; p[3] *= f1; p[5] = code; p += 6; } } // set default parameters void set_default_scalerot_params( scalerot_params_t* params ) { params->fast = true; params->min_sc0 = 0; // scale = 2^(-0/2) = 1 params->max_sc0 = 5; // scale = 2^(-5/2) = 0.176 params->min_sc1 = 0; params->max_sc1 = 5; params->min_rot = 0; // rot = 0*45 = 0 params->max_rot = 8; // rot = 8*45 = 360 } // main function for scale/rotation invariant version float_image* deep_matching_scale_rot( image_t* img0, image_t* img1, dm_params_t* params, const scalerot_params_t* sr_params ) { // verify parameters assert(sr_params->min_sc0 < sr_params->max_sc0); assert(sr_params->min_sc1 < sr_params->max_sc1); assert(between(0, sr_params->min_sc0, 5)); assert(between(0, sr_params->max_sc0, 5)); assert(between(0, sr_params->min_sc1, 5)); assert(between(0, sr_params->max_sc1, 5)); assert(sr_params->min_rot >= 0); assert(between(1,sr_params->max_rot - sr_params->min_rot, 8)); // init shape const int psize = get_atomic_patch_size(params); int imshape0[2]; get_source_shape( img0->width, img0->height, psize, imshape0 ); int imshape1[2] = {img1->width, img1->height}; // check dm params to ensure everything goes fine from now on #define mean_dim(shape) ((shape[0] + shape[1])/2) params->max_psize = MIN(mean_dim(imshape0), mean_dim(imshape1)); const int verbose = params->verbose; params->verbose = MAX(0, verbose - 1); // decrease for inner deepmatchings // prepare output const int step0 = psize/2; const int step1 = psize/2; float_cube all_corres0 = zeros_cube(float, (imshape0[0]+step0/2-1)/step0, (imshape0[1]+step0/2-1)/step0, 6); float_cube all_corres1 = zeros_cube(float, (imshape1[0]+step1/2-1)/step1, (imshape1[1]+step1/2-1)/step1, 6); full_corres_t out; const int NS = 5; image_t *scaled_images1[NS] = {NULL}; // loop over all scale*rot combinations for(int sc0 = sr_params->min_sc0; sc0 < sr_params->max_sc0; sc0++) { const float scale0 = pow(2, -0.5*sc0 ); // scale factor for img0 assert( scale0<=1 && sc0<5 ); image_t* scaled_img0 = ( scale0 >= 1 ) ? img0 : image_resize_bilinear_scale( img0, scale0 ); for(int sc1 = sr_params->min_sc1; sc1 < sr_params->max_sc1; sc1++) { const float scale1 = pow(2, -0.5*sc1 ); // scale factor for img1 assert( scale1<=1 && sc1<5 ); // optimization, deactivate only if eg. both images are blurry if( sr_params->fast && !(scale0==1 || scale1==1)) continue; image_t* scaled_img1 = scaled_images1[sc1 - sr_params->min_sc1]; if( scaled_img1 == NULL ) { scaled_img1 = ( scale1 >= 1 ) ? img1 : image_resize_bilinear_scale( img1, scale1 ); // remember result scaled_images1[sc1 - sr_params->min_sc1] = scaled_img1; } for(int rotation = sr_params->min_rot; rotation < sr_params->max_rot; rotation++) { assert( rotation >= 0 ); const int rot_scale_code = 8*(sc1*5+sc0) + (rotation%8); // cannot be negative, because of bin count if( verbose ) std_printf( "processing scale = (x%g, x%g) + rotation = %d deg (code %d)...\n", scale0, scale1, 45*rotation, rot_scale_code); float rot0[6], rot1[6]; // compute correspondences with rotated+scaled image #define max_dim(img) MAX(img->width, img->height) if( max_dim(scaled_img0) >= max_dim(scaled_img1) ) { // first image is always the largest params->rot45 = rotation; float_image* corres = deep_matching(scaled_img0, scaled_img1, params, &out ); free_image( corres ); // we don't care inv_rot3x3(out.rot, rot0); eye_rot3x3(rot1); } else { // scaled_img1 is larger params->rot45 = -rotation; float_image* corres = deep_matching(scaled_img1, scaled_img0, params, &out ); free_image( corres ); // we don't care // swap first and second image coordinates memswap( &out.corres0, &out.corres1, sizeof(float_cube) ); swap_first_second_img( &out.corres0 ); swap_first_second_img( &out.corres1 ); inv_rot3x3(out.rot, rot1); eye_rot3x3(rot0); } // change scale of correspondences rescale_corres( &out.corres0, 1/scale0, 1/scale1, rot_scale_code ); rescale_corres( &out.corres1, 1/scale0, 1/scale1, rot_scale_code ); scale_rot3x3(rot0, scale0); scale_rot3x3(rot1, scale1); // merge correspondences in the reference frame merge_corres( rot0, rot1, psize, psize, &out.corres0, &out.corres1, 2, step0, step1, &all_corres0, &all_corres1 ); // finer grid for merge free(out.corres0.pixels); free(out.corres1.pixels); } } // free memory if( img0 != scaled_img0 ) image_delete( scaled_img0 ); } // final intersection int nres; float* corres = _intersect_corres( &all_corres0, &all_corres1, &nres ); float_image* res = NEW(float_image); *res = (float_image){corres, 6, nres}; // free memory for(int i=0; i