/* Copyright (C) 2014 Jerome Revaud This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see */ #include "hog.h" #include "std.h" /* compute horizontal gradient centered with [-1,0,1] mask */ void _diff_horiz(int tx, int ty, UBYTE* pixels, float* res) { int x,y,pos=0; float* r=res; for(y=0; ytz==2); int tx = img->tx; int ty = img->ty; // compute horizontal gradient _diff_vert(tx,ty,img->pixels,grad->pixels); // compute vertical gradient _diff_horiz(tx,ty,img->pixels,grad->pixels+tx*ty); } /* compute horizontal smoothing with 3-sized mask */ template void _smooth_3_horiz(int tx, int ty, const int w_center, const int w_side, TData* pixels, TData* _res, int n_thread) { int y; const int sum_w = 2*w_side + w_center; #if defined(USE_OPENMP) #pragma omp parallel for num_threads(n_thread) #endif for(y=0; y void _smooth_5_horiz( int tx, int ty, const int w_center, const int w_side1, const int w_side2, TData* pixels, TData* _res, int n_thread) { int y; const int sum_w = 2*(w_side1 + w_side2) + w_center; #if defined(USE_OPENMP) #pragma omp parallel for num_threads(n_thread) #endif for(y=0; y void _smooth_7_horiz(int tx, int ty, const int w_center, const int w_side1, const int w_side2, const int w_side3, TData* pixels, TData* _res, int n_thread) { int y; const int sum_w = 2*(w_side1 + w_side2 + w_side3) + w_center; #if defined(USE_OPENMP) #pragma omp parallel for num_threads(n_thread) #endif for(y=0; y void _smooth_3_vert(int tx, int ty, const int w_center, const int w_side, TData* pixels, TData* res, int n_thread) { int x,y,pos=0; const int sum_w = 2*w_side + w_center; for(x=0; x void _smooth_5_vert(int tx, int ty, const int w_center, const int w_side1, const int w_side2, TData* pixels, TData* res, int n_thread) { int x,y,pos=0; const int sum_w = 2*(w_side1 + w_side2) + w_center; const int tx1=tx,tx2=2*tx; for(x=0; x void _smooth_7_vert(int tx, int ty, const int w_center, const int w_side1, const int w_side2, const int w_side3, TData* pixels, TData* res, int n_thread) { int x,y,pos=0; const int sum_w = 2*(w_side1 + w_side2 + w_side3) + w_center; const int tx1=tx,tx2=2*tx,tx3=3*tx; for(x=0; x void _smooth_gaussian_alltype( const int tx, const int ty, TData* img, float _sigma, TData* res, int n_thread ) { const float MAX_SIGMA = 1.86f; TData* img2 = img; if(_sigma>MAX_SIGMA) { // reallocate if more than one smoothing pass is required img2 = NEWA(TData,tx*ty); memcpy(img2,img,tx*ty*sizeof(TData)); } TData* tmp = NEWA(TData,tx*ty); TData* old_res = res; float remaining = _sigma*_sigma; while( 1 ) { float sigma = MIN(MAX_SIGMA,sqrt(remaining)); remaining -= sigma*sigma; // compute gaussian filter coefficients const int wcenter = 1000; const int wside1 = int(0.5 + wcenter*exp( -pow2(1./sigma)/2 )); const int wside2 = int(0.5 + wcenter*exp( -pow2(2./sigma)/2 )); const int wside3 = int(0.5 + wcenter*exp( -pow2(3./sigma)/2 )); const int wside4 = int(0.5 + wcenter*exp( -pow2(4./sigma)/2 )); assert( wside4 < wcenter/10 || !"error: smoothing is too large" ); if ( wside2 < wcenter/10 ) { _smooth_3_horiz( tx, ty, wcenter, wside1, img2, tmp, n_thread ); _smooth_3_vert( tx, ty, wcenter, wside1, tmp, res, n_thread ); } else if( wside3 < wcenter/10 ) { _smooth_5_horiz( tx, ty, wcenter, wside1, wside2, img2, tmp, n_thread ); _smooth_5_vert( tx, ty, wcenter, wside1, wside2, tmp, res, n_thread ); } else { _smooth_7_horiz( tx, ty, wcenter, wside1, wside2, wside3, img2, tmp, n_thread ); _smooth_7_vert( tx, ty, wcenter, wside1, wside2, wside3, tmp, res, n_thread ); } if(remaining < 0.001) break; else { TData* tmp3; tmp3 = img2; img2 = res; res = tmp3; } } if(res!=old_res) { // copy to true res memcpy(old_res,res,tx*ty*sizeof(TData)); img2 = res; } if(_sigma>MAX_SIGMA) free(img2); free(tmp); } void _smooth_gaussian( UBYTE_image* img, float _sigma, UBYTE_image* res, int n_thread ) { ASSERT_SAME_SIZE(img,res); _smooth_gaussian_alltype(img->tx,img->ty,img->pixels,_sigma,res->pixels,n_thread); } /* compute gradient smoothed with Sobel mask */ void _compute_sobel_gradient( UBYTE_image* img, float_layers* grad, int n_thread ) { ASSERT_SAME_SIZE(img,grad); assert(grad->tz==2); int tx = img->tx; int ty = img->ty; UBYTE* tmp = NEWA(UBYTE,tx*ty); // compute horizontal gradient _smooth_121_horiz(tx,ty,img->pixels,tmp, n_thread); _diff_vert(tx,ty,tmp,grad->pixels); // compute vertical gradient _smooth_121_vert(tx,ty,img->pixels,tmp, n_thread); _diff_horiz(tx,ty,tmp,grad->pixels+tx*ty); // free everything free(tmp); } /* Compute the dx,dy gradient on the image based on a [-1,0,1] mask. =0 : no prior smoothing =1 : sobel smoothing */ void _compute_grad_101( UBYTE_image* img, int method, float_layers* grad, int n_thread ) { ASSERT_SAME_SIZE(img,grad); assert(grad->tz==2); // compute gradient if( method == 0 ) _compute_pure_gradient(img, grad); else if( method == 1 ) _compute_sobel_gradient(img, grad, n_thread); else assert(!"error: unknown method for compute_grad_101"); } /* Compute the Histogram of oriented gradient for each pixel. Number of orientations is determined by hog->tz; method determines orientation bining: =0 : atan + linear interpolation =1 : fast cos projection */ void _compute_hog( float_layers* grad, int method, float_layers* hog, int n_thread ) { ASSERT_SAME_SIZE(grad,hog); const int n_ori = hog->tz; const int npix = hog->tx*hog->ty; const float* dx = grad->pixels; const float* dy = grad->pixels + npix; if( method == 0 ) { // use atan memset(hog->pixels,0,n_ori*npix*sizeof(float)); int i; for(i=0; ipixels[ ((q_angle ) )*npix + i ] += (1-coef)*norm; hog->pixels[ ((q_angle+1)%n_ori)*npix + i ] += ( coef)*norm; } } else if (method == 1 ) { int l; #if defined(USE_OPENMP) #pragma omp parallel for num_threads(n_thread) #endif for(l=0; lpixels + l*npix; int i; for(i=0; i 0 ) ? value : 0; } } } else assert(!"error: unknown method for compute_hog"); } /* compute 8 directions of gradient per pixels using 4 oriented filters extremely simple like [-1,1] */ void _compute_hog_8_direct( UBYTE_image* image, float_layers* hog_out, int n_thread ) { ASSERT_SAME_SIZE(image,hog_out); assert(hog_out->tz==8); int j,tx=image->tx, ty=image->ty; int npix=tx*image->ty; // init output memset(hog_out->pixels,0,8*npix*sizeof(float)); // compute horizontal filter #if defined(USE_OPENMP) #pragma omp parallel for num_threads(n_thread) #endif for(j=0; jpixels + j*tx; UBYTE* lastimg = img + tx-1; float* hog0f = hog_out->pixels + 0*npix + j*tx; // first float* hog0l = hog0f+1; // last float* hog1f = hog_out->pixels + 4*npix + j*tx; // first float* hog1l = hog1f+1; // last for(; imgpixels + j*tx; UBYTE* lastimg = img + tx; const int offset = tx; UBYTE* img2 = img + offset; float* hog0f = hog_out->pixels + 2*npix + j*tx; // first float* hog0l = hog0f + offset; // last float* hog1f = hog_out->pixels + 6*npix + j*tx; // first float* hog1l = hog1f + offset; // last while(imgpixels + j*tx; UBYTE* lastimg = img + tx-1; const int offset = 1+tx; UBYTE* img2 = img + offset; float* hog0f = hog_out->pixels + 1*npix + j*tx; // first float* hog0l = hog0f + offset; // last float* hog1f = hog_out->pixels + 5*npix + j*tx; // first float* hog1l = hog1f + offset; // last while(imgpixels + j*tx; UBYTE* lastimg = img + tx-1; const int offset = 1-tx; UBYTE* img2 = img + offset; float* hog0f = hog_out->pixels + 7*npix + j*tx; // first float* hog0l = hog0f + offset; // last float* hog1f = hog_out->pixels + 3*npix + j*tx; // first float* hog1l = hog1f + offset; // last while(imgtx*hog->ty; int l; float* sum = NEWAC(float, npix); float* max = NEWAC(float, npix); // compute mean per pixel #if defined(USE_OPENMP) #pragma omp parallel for num_threads(n_thread) #endif for(l=0; ltz; l++) { float* p = sum; float* m = max; float* hog_pix = hog->pixels + l*npix; int i; for(i=0; imax) *m=v; } } // subtract coef*mean coef /= hog->tz; #if defined(USE_OPENMP) #pragma omp parallel for num_threads(n_thread) #endif for(l=0; ltz; l++) { float* p = sum; float* m = max; float* hog_pix = hog->pixels + l*npix; int i; for(i=0; i= Max ) *hog_pix = 0; else { *hog_pix = Max*(1 - (Max - (*hog_pix))/(Max - mean + 1e-8f)); if(*hog_pix<0) *hog_pix = 0; } hog_pix++; } } free(sum); free(max); } /* Pass the gradient image through a sigmoid */ void sigmoid_array( float_array* img, float coef, float offset, int n_thread ) { assert(coef>0); const int npix=img->tx; // float* p = img->pixels; // for(i=0; ipixels + start; int i; for(i=0; imaxindex) v=maxindex; int n = int(v); float w = v-n; *p++ = (1-w)*precom[n] + w*precom[n+1]; } } } /* Compute a spatially smoothed version of the HOG. */ void smooth_hog_gaussian( float_layers* hog, float smoothing, int n_thread ) { int l; const int npix = hog->tx*hog->ty; for(l=0; ltz; l++) _smooth_gaussian_alltype(hog->tx,hog->ty,hog->pixels+l*npix,smoothing,hog->pixels+l*npix, n_thread); }