# coding: utf-8 ''' File: matching.py Project: AlphaPose File Created: Monday, 1st October 2018 12:53:12 pm Author: Yuliang Xiu (yuliangxiu@sjtu.edu.cn) Copyright 2018 - 2018 Shanghai Jiao Tong University, Machine Vision and Intelligence Group ''' import os import cv2 from tqdm import tqdm import numpy as np import time import argparse def generate_fake_cor(img, out_path): print("Generate fake correspondence files...%s"%out_path) fd = open(out_path,"w") height, width, channels = img.shape for x in range(width): for y in range(height): ret = fd.write("%d %d %d %d %f \n"%(x, y, x, y, 1.0)) fd.close() def orb_matching(img1_path, img2_path, vidname, img1_id, img2_id): out_path = "%s/%s_%s_orb.txt"%(vidname, img1_id, img2_id) # print(out_path) img1 = cv2.cvtColor(cv2.imread(img1_path), cv2.COLOR_BGR2RGB) img2 = cv2.cvtColor(cv2.imread(img2_path), cv2.COLOR_BGR2RGB) # Initiate ORB detector orb = cv2.ORB_create(nfeatures=10000, scoreType=cv2.ORB_FAST_SCORE) # find the keypoints and descriptors with ORB kp1, des1 = orb.detectAndCompute(img1,None) kp2, des2 = orb.detectAndCompute(img2,None) if len(kp1)*len(kp2) < 400: generate_fake_cor(img1, out_path) return # FLANN parameters FLANN_INDEX_LSH = 6 index_params= dict(algorithm = FLANN_INDEX_LSH, table_number = 12, # 12 key_size = 12, # 20 multi_probe_level = 2) #2 search_params = dict(checks=100) # or pass empty dictionary flann = cv2.FlannBasedMatcher(index_params,search_params) matches = flann.knnMatch(des1, des2, k=2) # Open file fd = open(out_path,"w") # ratio test as per Lowe's paper for i, m_n in enumerate(matches): if len(m_n) != 2: continue elif m_n[0].distance < 0.80*m_n[1].distance: ret = fd.write("%d %d %d %d %f \n"%(kp1[m_n[0].queryIdx].pt[0], kp1[m_n[0].queryIdx].pt[1], kp2[m_n[0].trainIdx].pt[0], kp2[m_n[0].trainIdx].pt[1], m_n[0].distance)) # Close opened file fd.close() # print(os.stat(out_path).st_size) if os.stat(out_path).st_size<1000: generate_fake_cor(img1, out_path) if __name__ == '__main__': parser = argparse.ArgumentParser(description='FoseFlow Matching') parser.add_argument('--orb', type=int, default=0) args = parser.parse_args() image_dir = "posetrack_data/images" imgnames = [] vidnames = [] for a,b,c in os.walk(image_dir): if len(a.split("/")) == 4: vidnames.append(a) for vidname in tqdm(sorted(vidnames)): for a,b,c in os.walk(vidname): c=[item for item in c if "jpg" in item] imgnames = sorted(c) break for imgname in imgnames[:-1]: if 'crop' in imgname: continue img1 = os.path.join(vidname,imgname) len_name = len(imgname.split(".")[0]) if len_name == 5: img2 = os.path.join(vidname,"%05d.jpg"%(int(imgname.split(".")[0])+1)) else: img2 = os.path.join(vidname,"%08d.jpg"%(int(imgname.split(".")[0])+1)) if not os.path.exists(img2): continue img1_id = img1.split(".")[0].split("/")[-1] img2_id = img2.split(".")[0].split("/")[-1] if args.orb: cor_file = "%s/%s_%s_orb.txt"%(vidname,img1_id,img2_id) else: cor_file = "%s/%s_%s.txt"%(vidname,img1_id,img2_id) if not os.path.exists(cor_file) or os.stat(cor_file).st_size<1000: if args.orb: # calc orb matching orb_matching(img1,img2,vidname,img1_id,img2_id) else: # calc deep matching cmd = "./deepmatching/deepmatching %s %s -nt 10 -downscale 3 -out %s/%s_%s.txt > cache"%(img1,img2,vidname,img1_id,img2_id) os.system(cmd)