# coding: utf-8 ''' File: tracker-general.py Project: AlphaPose File Created: Tuesday, 18st Dec 2018 14:55:41 pm ----- Last Modified: Thursday, 20st Dec 2018 23:24:47 pm Modified By: Yuliang Xiu (yuliangxiu@sjtu.edu.cn>) ----- Author: Yuliang Xiu (yuliangxiu@sjtu.edu.cn) Copyright 2018 - 2018 Shanghai Jiao Tong University, Machine Vision and Intelligence Group ''' import numpy as np import os import json import copy import heapq from munkres import Munkres, print_matrix from PIL import Image import matplotlib.pyplot as plt from tqdm import tqdm from utils import * from matching import orb_matching import argparse # visualization def display_pose(imgdir, visdir, tracked, cmap): print("Start visualization...\n") for imgname in tqdm(tracked.keys()): img = Image.open(os.path.join(imgdir,imgname)) width, height = img.size fig = plt.figure(figsize=(width/10,height/10),dpi=10) plt.imshow(img) for pid in range(len(tracked[imgname])): pose = np.array(tracked[imgname][pid]['keypoints']).reshape(-1,3)[:,:3] tracked_id = tracked[imgname][pid]['idx'] # keypoint scores of torch version and pytorch version are different if np.mean(pose[:,2]) <1 : alpha_ratio = 1.0 else: alpha_ratio = 5.0 if pose.shape[0] == 16: mpii_part_names = ['RAnkle','RKnee','RHip','LHip','LKnee','LAnkle','Pelv','Thrx','Neck','Head','RWrist','RElbow','RShoulder','LShoulder','LElbow','LWrist'] colors = ['m', 'b', 'b', 'r', 'r', 'b', 'b', 'r', 'r', 'm', 'm', 'm', 'r', 'r','b','b'] pairs = [[8,9],[11,12],[11,10],[2,1],[1,0],[13,14],[14,15],[3,4],[4,5],[8,7],[7,6],[6,2],[6,3],[8,12],[8,13]] for idx_c, color in enumerate(colors): plt.plot(np.clip(pose[idx_c,0],0,width), np.clip(pose[idx_c,1],0,height), marker='o', color=color, ms=80/alpha_ratio*np.mean(pose[idx_c,2]), markerfacecolor=(1, 1, 0, 0.7/alpha_ratio*pose[idx_c,2])) for idx in range(len(pairs)): plt.plot(np.clip(pose[pairs[idx],0],0,width),np.clip(pose[pairs[idx],1],0,height), 'r-', color=cmap(tracked_id), linewidth=60/alpha_ratio*np.mean(pose[pairs[idx],2]), alpha=0.6/alpha_ratio*np.mean(pose[pairs[idx],2])) elif pose.shape[0] == 17: coco_part_names = ['Nose','LEye','REye','LEar','REar','LShoulder','RShoulder','LElbow','RElbow','LWrist','RWrist','LHip','RHip','LKnee','RKnee','LAnkle','RAnkle'] colors = ['r', 'r', 'r', 'r', 'r', 'y', 'y', 'y', 'y', 'y', 'y', 'g', 'g', 'g','g','g','g'] pairs = [[0,1],[0,2],[1,3],[2,4],[5,6],[5,7],[7,9],[6,8],[8,10],[11,12],[11,13],[13,15],[12,14],[14,16],[6,12],[5,11]] for idx_c, color in enumerate(colors): plt.plot(np.clip(pose[idx_c,0],0,width), np.clip(pose[idx_c,1],0,height), marker='o', color=color, ms=80/alpha_ratio*np.mean(pose[idx_c,2]), markerfacecolor=(1, 1, 0, 0.7/alpha_ratio*pose[idx_c,2])) for idx in range(len(pairs)): plt.plot(np.clip(pose[pairs[idx],0],0,width),np.clip(pose[pairs[idx],1],0,height),'r-', color=cmap(tracked_id), linewidth=60/alpha_ratio*np.mean(pose[pairs[idx],2]), alpha=0.6/alpha_ratio*np.mean(pose[pairs[idx],2])) plt.axis('off') ax = plt.gca() ax.set_xlim([0,width]) ax.set_ylim([height,0]) extent = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) if not os.path.exists(visdir): os.mkdir(visdir) fig.savefig(os.path.join(visdir,imgname.split()[0]+".png"), pad_inches = 0.0, bbox_inches=extent, dpi=13) plt.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description='FoseFlow Tracker') parser.add_argument('--imgdir', type=str, required=True, help="Must input the images dir") parser.add_argument('--in_json', type=str, required=True, help="result json predicted by AlphaPose") parser.add_argument('--out_json', type=str, required=True, help="output path of tracked json") parser.add_argument('--visdir', type=str, default="", help="visulization tracked results of video sequences") parser.add_argument('--link', type=int, default=100) parser.add_argument('--drop', type=float, default=2.0) parser.add_argument('--num', type=int, default=7) parser.add_argument('--mag', type=int, default=30) parser.add_argument('--match', type=float, default=0.2) args = parser.parse_args() # super parameters # 1. look-ahead LINK_LEN frames to find tracked human bbox # 2. bbox_IoU(deepmatching), bbox_IoU(general), pose_IoU(deepmatching), pose_IoU(general), box1_score, box2_score # 3. bbox_IoU(deepmatching), bbox_IoU(general), pose_IoU(deepmatching), pose_IoU(general), box1_score, box2_score(Non DeepMatching) # 4. drop low-score( match_thres: track[next_frame_name][pid2+1]['new_pid'] = cur_all_pids[pid1]['new_pid'] max_pid_id = max(max_pid_id, track[next_frame_name][pid2+1]['new_pid']) track[next_frame_name][pid2+1]['match_score'] = match_scores[pid1][pid2] # add the untracked new person for next_pid in range(1, track[next_frame_name]['num_boxes'] + 1): if 'new_pid' not in track[next_frame_name][next_pid]: max_pid_id += 1 track[next_frame_name][next_pid]['new_pid'] = max_pid_id track[next_frame_name][next_pid]['match_score'] = 0 np.save('track-bl.npy',track) # track = np.load('track-bl.npy').item() # calculate number of people num_persons = 0 for fid, frame_name in enumerate(frame_list): for pid in range(1, track[frame_name]['num_boxes']+1): num_persons = max(num_persons, track[frame_name][pid]['new_pid']) print("This video contains %d people."%(num_persons)) # export tracking result into notrack json files print("Export tracking results to json...\n") for fid, frame_name in enumerate(tqdm(frame_list)): for pid in range(track[frame_name]['num_boxes']): notrack[frame_name][pid]['idx'] = track[frame_name][pid+1]['new_pid'] with open(tracked_json,'w') as json_file: json_file.write(json.dumps(notrack)) if len(args.visdir)>0: cmap = plt.cm.get_cmap("hsv", num_persons) display_pose(image_dir, vis_dir, notrack, cmap)