//////////////////////////////////////////////////////////////////////////// // File: util.h // Author: Changchang Wu (ccwu@cs.washington.edu) // Description : some utility functions for reading/writing SfM data // // Copyright (c) 2011 Changchang Wu (ccwu@cs.washington.edu) // and the University of Washington at Seattle // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public // License as published by the Free Software Foundation; either // Version 3 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // //////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include using namespace std; #include "DataInterface.h" namespace pba { // File loader supports .nvm format and bundler format bool LoadModelFile(const char* name, vector& camera_data, vector& point_data, vector& measurements, vector& ptidx, vector& camidx, vector& names, vector& ptc); void SaveNVM(const char* filename, vector& camera_data, vector& point_data, vector& measurements, vector& ptidx, vector& camidx, vector& names, vector& ptc); void SaveBundlerModel(const char* filename, vector& camera_data, vector& point_data, vector& measurements, vector& ptidx, vector& camidx); ////////////////////////////////////////////////////////////////// void AddNoise(vector& camera_data, vector& point_data, float percent); void AddStableNoise(vector& camera_data, vector& point_data, const vector& ptidx, const vector& camidx, float percent); bool RemoveInvisiblePoints(vector& camera_data, vector& point_data, vector& ptidx, vector& camidx, vector& measurements, vector& names, vector& ptc); ///////////////////////////////////////////////////////////////////////////// bool LoadNVM(ifstream& in, vector& camera_data, vector& point_data, vector& measurements, vector& ptidx, vector& camidx, vector& names, vector& ptc) { int rotation_parameter_num = 4; bool format_r9t = false; string token; if (in.peek() == 'N') { in >> token; // file header if (strstr(token.c_str(), "R9T")) { rotation_parameter_num = 9; // rotation as 3x3 matrix format_r9t = true; } } int ncam = 0, npoint = 0, nproj = 0; // read # of cameras in >> ncam; if (ncam <= 1) return false; // read the camera parameters camera_data.resize(ncam); // allocate the camera data names.resize(ncam); for (int i = 0; i < ncam; ++i) { double f, q[9], c[3], d[2]; in >> token >> f; for (int j = 0; j < rotation_parameter_num; ++j) in >> q[j]; in >> c[0] >> c[1] >> c[2] >> d[0] >> d[1]; camera_data[i].SetFocalLength(f); if (format_r9t) { camera_data[i].SetMatrixRotation(q); camera_data[i].SetTranslation(c); } else { // older format for compability camera_data[i].SetQuaternionRotation(q); // quaternion from the file camera_data[i].SetCameraCenterAfterRotation( c); // camera center from the file } camera_data[i].SetNormalizedMeasurementDistortion(d[0]); names[i] = token; } ////////////////////////////////////// in >> npoint; if (npoint <= 0) return false; // read image projections and 3D points. point_data.resize(npoint); for (int i = 0; i < npoint; ++i) { float pt[3]; int cc[3], npj; in >> pt[0] >> pt[1] >> pt[2] >> cc[0] >> cc[1] >> cc[2] >> npj; for (int j = 0; j < npj; ++j) { int cidx, fidx; float imx, imy; in >> cidx >> fidx >> imx >> imy; camidx.push_back(cidx); // camera index ptidx.push_back(i); // point index // add a measurment to the vector measurements.push_back(Point2D(imx, imy)); nproj++; } point_data[i].SetPoint(pt); ptc.insert(ptc.end(), cc, cc + 3); } /////////////////////////////////////////////////////////////////////////////// std::cout << ncam << " cameras; " << npoint << " 3D points; " << nproj << " projections\n"; return true; } void SaveNVM(const char* filename, vector& camera_data, vector& point_data, vector& measurements, vector& ptidx, vector& camidx, vector& names, vector& ptc) { std::cout << "Saving model to " << filename << "...\n"; ofstream out(filename); out << "NVM_V3_R9T\n" << camera_data.size() << '\n' << std::setprecision(12); if (names.size() < camera_data.size()) names.resize(camera_data.size(), string("unknown")); if (ptc.size() < 3 * point_data.size()) ptc.resize(point_data.size() * 3, 0); //////////////////////////////////// for (size_t i = 0; i < camera_data.size(); ++i) { CameraT& cam = camera_data[i]; out << names[i] << ' ' << cam.GetFocalLength() << ' '; for (int j = 0; j < 9; ++j) out << cam.m[0][j] << ' '; out << cam.t[0] << ' ' << cam.t[1] << ' ' << cam.t[2] << ' ' << cam.GetNormalizedMeasurementDistortion() << " 0\n"; } out << point_data.size() << '\n'; for (size_t i = 0, j = 0; i < point_data.size(); ++i) { Point3D& pt = point_data[i]; int* pc = &ptc[i * 3]; out << pt.xyz[0] << ' ' << pt.xyz[1] << ' ' << pt.xyz[2] << ' ' << pc[0] << ' ' << pc[1] << ' ' << pc[2] << ' '; size_t je = j; while (je < ptidx.size() && ptidx[je] == (int)i) je++; out << (je - j) << ' '; for (; j < je; ++j) out << camidx[j] << ' ' << " 0 " << measurements[j].x << ' ' << measurements[j].y << ' '; out << '\n'; } } bool LoadBundlerOut(const char* name, ifstream& in, vector& camera_data, vector& point_data, vector& measurements, vector& ptidx, vector& camidx, vector& names, vector& ptc) { int rotation_parameter_num = 9; string token; while (in.peek() == '#') std::getline(in, token); char listpath[1024], filepath[1024]; strcpy(listpath, name); char* ext = strstr(listpath, ".out"); strcpy(ext, "-list.txt\0"); /////////////////////////////////// ifstream listin(listpath); if (!listin.is_open()) { listin.close(); listin.clear(); char* slash = strrchr(listpath, '/'); if (slash == NULL) slash = strrchr(listpath, '\\'); slash = slash ? slash + 1 : listpath; strcpy(slash, "image_list.txt"); listin.open(listpath); } if (listin) std::cout << "Using image list: " << listpath << '\n'; // read # of cameras int ncam = 0, npoint = 0, nproj = 0; in >> ncam >> npoint; if (ncam <= 1 || npoint <= 1) return false; std::cout << ncam << " cameras; " << npoint << " 3D points;\n"; // read the camera parameters camera_data.resize(ncam); // allocate the camera data names.resize(ncam); bool det_checked = false; for (int i = 0; i < ncam; ++i) { float f, q[9], c[3], d[2]; in >> f >> d[0] >> d[1]; for (int j = 0; j < rotation_parameter_num; ++j) in >> q[j]; in >> c[0] >> c[1] >> c[2]; camera_data[i].SetFocalLength(f); camera_data[i].SetInvertedR9T(q, c); camera_data[i].SetProjectionDistortion(d[0]); if (listin >> filepath && f != 0) { char* slash = strrchr(filepath, '/'); if (slash == NULL) slash = strchr(filepath, '\\'); names[i] = (slash ? (slash + 1) : filepath); std::getline(listin, token); if (!det_checked) { float det = camera_data[i].GetRotationMatrixDeterminant(); std::cout << "Check rotation matrix: " << det << '\n'; det_checked = true; } } else { names[i] = "unknown"; } } // read image projections and 3D points. point_data.resize(npoint); for (int i = 0; i < npoint; ++i) { float pt[3]; int cc[3], npj; in >> pt[0] >> pt[1] >> pt[2] >> cc[0] >> cc[1] >> cc[2] >> npj; for (int j = 0; j < npj; ++j) { int cidx, fidx; float imx, imy; in >> cidx >> fidx >> imx >> imy; camidx.push_back(cidx); // camera index ptidx.push_back(i); // point index // add a measurment to the vector measurements.push_back(Point2D(imx, -imy)); nproj++; } point_data[i].SetPoint(pt[0], pt[1], pt[2]); ptc.insert(ptc.end(), cc, cc + 3); } /////////////////////////////////////////////////////////////////////////////// std::cout << ncam << " cameras; " << npoint << " 3D points; " << nproj << " projections\n"; return true; } void SaveBundlerOut(const char* filename, vector& camera_data, vector& point_data, vector& measurements, vector& ptidx, vector& camidx, vector& names, vector& ptc) { char listpath[1024]; strcpy(listpath, filename); char* ext = strstr(listpath, ".out"); if (ext == NULL) return; strcpy(ext, "-list.txt\0"); ofstream out(filename); out << "# Bundle file v0.3\n"; out << std::setprecision(12); // need enough precision out << camera_data.size() << " " << point_data.size() << '\n'; // save camera data for (size_t i = 0; i < camera_data.size(); ++i) { float q[9], c[3]; CameraT& ci = camera_data[i]; out << ci.GetFocalLength() << ' ' << ci.GetProjectionDistortion() << " 0\n"; ci.GetInvertedR9T(q, c); for (int j = 0; j < 9; ++j) out << q[j] << (((j % 3) == 2) ? '\n' : ' '); out << c[0] << ' ' << c[1] << ' ' << c[2] << '\n'; } /// for (size_t i = 0, j = 0; i < point_data.size(); ++i) { int npj = 0, *ci = &ptc[i * 3]; Point3D& pt = point_data[i]; while (j + npj < point_data.size() && ptidx[j + npj] == ptidx[j]) npj++; /////////////////////////// out << pt.xyz[0] << ' ' << pt.xyz[1] << ' ' << pt.xyz[2] << '\n'; out << ci[0] << ' ' << ci[1] << ' ' << ci[2] << '\n'; out << npj << ' '; for (int k = 0; k < npj; ++k) out << camidx[j + k] << " 0 " << measurements[j + k].x << ' ' << -measurements[j + k].y << '\n'; out << '\n'; j += npj; } ofstream listout(listpath); for (size_t i = 0; i < names.size(); ++i) listout << names[i] << '\n'; } template bool LoadBundlerModel(ifstream& in, vector& camera_data, vector& point_data, vector& measurements, vector& ptidx, vector& camidx) { // read bundle data from a file size_t ncam = 0, npt = 0, nproj = 0; if (!(in >> ncam >> npt >> nproj)) return false; /////////////////////////////////////////////////////////////////////////////// std::cout << ncam << " cameras; " << npt << " 3D points; " << nproj << " projections\n"; camera_data.resize(ncam); point_data.resize(npt); measurements.resize(nproj); camidx.resize(nproj); ptidx.resize(nproj); for (size_t i = 0; i < nproj; ++i) { double x, y; int cidx, pidx; in >> cidx >> pidx >> x >> y; if (((size_t)pidx) == npt && camidx.size() > i) { camidx.resize(i); ptidx.resize(i); measurements.resize(i); std::cout << "Truncate measurements to " << i << '\n'; } else if (((size_t)pidx) >= npt) { continue; } else { camidx[i] = cidx; ptidx[i] = pidx; measurements[i].SetPoint2D(x, -y); } } for (size_t i = 0; i < ncam; ++i) { double p[9]; for (int j = 0; j < 9; ++j) in >> p[j]; CameraT& cam = camera_data[i]; cam.SetFocalLength(p[6]); cam.SetInvertedRT(p, p + 3); cam.SetProjectionDistortion(p[7]); } for (size_t i = 0; i < npt; ++i) { double pt[3]; in >> pt[0] >> pt[1] >> pt[2]; point_data[i].SetPoint(pt); } return true; } void SaveBundlerModel(const char* filename, vector& camera_data, vector& point_data, vector& measurements, vector& ptidx, vector& camidx) { std::cout << "Saving model to " << filename << "...\n"; ofstream out(filename); out << std::setprecision(12); // need enough precision out << camera_data.size() << ' ' << point_data.size() << ' ' << measurements.size() << '\n'; for (size_t i = 0; i < measurements.size(); ++i) { out << camidx[i] << ' ' << ptidx[i] << ' ' << measurements[i].x << ' ' << -measurements[i].y << '\n'; } for (size_t i = 0; i < camera_data.size(); ++i) { CameraT& cam = camera_data[i]; double r[3], t[3]; cam.GetInvertedRT(r, t); out << r[0] << ' ' << r[1] << ' ' << r[2] << ' ' << t[0] << ' ' << t[1] << ' ' << t[2] << ' ' << cam.f << ' ' << cam.GetProjectionDistortion() << " 0\n"; } for (size_t i = 0; i < point_data.size(); ++i) { Point3D& pt = point_data[i]; out << pt.xyz[0] << ' ' << pt.xyz[1] << ' ' << pt.xyz[2] << '\n'; } } bool LoadModelFile(const char* name, vector& camera_data, vector& point_data, vector& measurements, vector& ptidx, vector& camidx, vector& names, vector& ptc) { if (name == NULL) return false; ifstream in(name); std::cout << "Loading cameras/points: " << name << "\n"; if (!in.is_open()) return false; if (strstr(name, ".nvm")) return LoadNVM(in, camera_data, point_data, measurements, ptidx, camidx, names, ptc); else if (strstr(name, ".out")) return LoadBundlerOut(name, in, camera_data, point_data, measurements, ptidx, camidx, names, ptc); else return LoadBundlerModel(in, camera_data, point_data, measurements, ptidx, camidx); } float random_ratio(float percent) { return (rand() % 101 - 50) * 0.02f * percent + 1.0f; } void AddNoise(vector& camera_data, vector& point_data, float percent) { std::srand((unsigned int)time(NULL)); for (size_t i = 0; i < camera_data.size(); ++i) { camera_data[i].f *= random_ratio(percent); camera_data[i].t[0] *= random_ratio(percent); camera_data[i].t[1] *= random_ratio(percent); camera_data[i].t[2] *= random_ratio(percent); double e[3]; camera_data[i].GetRodriguesRotation(e); e[0] *= random_ratio(percent); e[1] *= random_ratio(percent); e[2] *= random_ratio(percent); camera_data[i].SetRodriguesRotation(e); } for (size_t i = 0; i < point_data.size(); ++i) { point_data[i].xyz[0] *= random_ratio(percent); point_data[i].xyz[1] *= random_ratio(percent); point_data[i].xyz[2] *= random_ratio(percent); } } void AddStableNoise(vector& camera_data, vector& point_data, const vector& ptidx, const vector& camidx, float percent) { /// std::srand((unsigned int)time(NULL)); // do not modify the visibility status.. vector zz0(ptidx.size()); vector backup = camera_data; vector vx(point_data.size()), vy(point_data.size()), vz(point_data.size()); for (size_t i = 0; i < point_data.size(); ++i) { Point3D& pt = point_data[i]; vx[i] = pt.xyz[0]; vy[i] = pt.xyz[1]; vz[i] = pt.xyz[2]; } // find out the median location of all the 3D points. size_t median_idx = point_data.size() / 2; std::nth_element(vx.begin(), vx.begin() + median_idx, vx.end()); std::nth_element(vy.begin(), vy.begin() + median_idx, vy.end()); std::nth_element(vz.begin(), vz.begin() + median_idx, vz.end()); float cx = vx[median_idx], cy = vy[median_idx], cz = vz[median_idx]; for (size_t i = 0; i < ptidx.size(); ++i) { CameraT& cam = camera_data[camidx[i]]; Point3D& pt = point_data[ptidx[i]]; zz0[i] = cam.m[2][0] * pt.xyz[0] + cam.m[2][1] * pt.xyz[1] + cam.m[2][2] * pt.xyz[2] + cam.t[2]; } vector z2 = zz0; median_idx = ptidx.size() / 2; std::nth_element(z2.begin(), z2.begin() + median_idx, z2.end()); float mz = z2[median_idx]; // median depth float dist_noise_base = mz * 0.2f; ///////////////////////////////////////////////// // modify points first.. for (size_t i = 0; i < point_data.size(); ++i) { Point3D& pt = point_data[i]; pt.xyz[0] = pt.xyz[0] - cx + dist_noise_base * random_ratio(percent); pt.xyz[1] = pt.xyz[1] - cy + dist_noise_base * random_ratio(percent); pt.xyz[2] = pt.xyz[2] - cz + dist_noise_base * random_ratio(percent); } vector need_modification(camera_data.size(), true); int invalid_count = 0, modify_iteration = 1; do { if (invalid_count) std::cout << "NOTE" << std::setw(2) << modify_iteration << ": modify " << invalid_count << " camera to fix visibility\n"; ////////////////////////////////////////////////////// for (size_t i = 0; i < camera_data.size(); ++i) { if (!need_modification[i]) continue; CameraT& cam = camera_data[i]; double e[3], c[3]; cam = backup[i]; cam.f *= random_ratio(percent); /////////////////////////////////////////////////////////// cam.GetCameraCenter(c); c[0] = c[0] - cx + dist_noise_base * random_ratio(percent); c[1] = c[1] - cy + dist_noise_base * random_ratio(percent); c[2] = c[2] - cz + dist_noise_base * random_ratio(percent); /////////////////////////////////////////////////////////// cam.GetRodriguesRotation(e); e[0] *= random_ratio(percent); e[1] *= random_ratio(percent); e[2] *= random_ratio(percent); /////////////////////////////////////////////////////////// cam.SetRodriguesRotation(e); cam.SetCameraCenterAfterRotation(c); } vector invalidc(camera_data.size(), false); invalid_count = 0; for (size_t i = 0; i < ptidx.size(); ++i) { int cid = camidx[i]; if (need_modification[cid] == false) continue; if (invalidc[cid]) continue; CameraT& cam = camera_data[cid]; Point3D& pt = point_data[ptidx[i]]; float z = cam.m[2][0] * pt.xyz[0] + cam.m[2][1] * pt.xyz[1] + cam.m[2][2] * pt.xyz[2] + cam.t[2]; if (z * zz0[i] > 0) continue; if (zz0[i] == 0 && z > 0) continue; invalid_count++; invalidc[cid] = true; } need_modification = invalidc; modify_iteration++; } while (invalid_count && modify_iteration < 20); } void ExamineVisiblity(const char* input_filename) { ////////////// vector camera_data; vector point_data; vector ptidx, camidx; vector measurements; ifstream in(input_filename); LoadBundlerModel(in, camera_data, point_data, measurements, ptidx, camidx); //////////////// int count = 0; double d1 = 100, d2 = 100; std::cout << "checking visibility...\n"; vector zz(ptidx.size()); for (size_t i = 0; i < ptidx.size(); ++i) { CameraD& cam = camera_data[camidx[i]]; Point3B& pt = point_data[ptidx[i]]; double dz = cam.m[2][0] * pt.xyz[0] + cam.m[2][1] * pt.xyz[1] + cam.m[2][2] * pt.xyz[2] + cam.t[2]; // double dx = cam.m[0][0] * pt.xyz[0] + cam.m[0][1] * pt.xyz[1] + // cam.m[0][2] * pt.xyz[2] + cam.t[0]; // double dy = cam.m[1][0] * pt.xyz[0] + cam.m[1][1] * pt.xyz[1] + // cam.m[1][2] * pt.xyz[2] + cam.t[1]; //////////////////////////////////////// float c[3]; cam.GetCameraCenter(c); CameraT camt; camt.SetCameraT(cam); Point3D ptt; ptt.SetPoint(pt.xyz); double fz = camt.m[2][0] * ptt.xyz[0] + camt.m[2][1] * ptt.xyz[1] + camt.m[2][2] * ptt.xyz[2] + camt.t[2]; double fz2 = camt.m[2][0] * (ptt.xyz[0] - c[0]) + camt.m[2][1] * (ptt.xyz[1] - c[1]) + camt.m[2][2] * (ptt.xyz[2] - c[2]); // if(dz == 0 && fz == 0) continue; if (dz * fz <= 0 || fz == 0) { std::cout << "cam " << camidx[i] //<& camera_data, vector& point_data, vector& ptidx, vector& camidx, vector& measurements, vector& names, vector& ptc) { vector zz(ptidx.size()); for (size_t i = 0; i < ptidx.size(); ++i) { CameraT& cam = camera_data[camidx[i]]; Point3D& pt = point_data[ptidx[i]]; zz[i] = cam.m[2][0] * pt.xyz[0] + cam.m[2][1] * pt.xyz[1] + cam.m[2][2] * pt.xyz[2] + cam.t[2]; } size_t median_idx = ptidx.size() / 2; std::nth_element(zz.begin(), zz.begin() + median_idx, zz.end()); float dist_threshold = zz[median_idx] * 0.001f; // keep removing 3D points. until all of them are infront of the cameras.. vector pmask(point_data.size(), true); int points_removed = 0; for (size_t i = 0; i < ptidx.size(); ++i) { int cid = camidx[i], pid = ptidx[i]; if (!pmask[pid]) continue; CameraT& cam = camera_data[cid]; Point3D& pt = point_data[pid]; bool visible = (cam.m[2][0] * pt.xyz[0] + cam.m[2][1] * pt.xyz[1] + cam.m[2][2] * pt.xyz[2] + cam.t[2] > dist_threshold); pmask[pid] = visible; // this point should be removed if (!visible) points_removed++; } if (points_removed == 0) return false; vector cv(camera_data.size(), 0); // should any cameras be removed ? int min_observation = 20; // cameras should see at leat 20 points do { // count visible points for each camera std::fill(cv.begin(), cv.end(), 0); for (size_t i = 0; i < ptidx.size(); ++i) { int cid = camidx[i], pid = ptidx[i]; if (pmask[pid]) cv[cid]++; } // check if any more points should be removed vector pv(point_data.size(), 0); for (size_t i = 0; i < ptidx.size(); ++i) { int cid = camidx[i], pid = ptidx[i]; if (!pmask[pid]) continue; // point already removed if (cv[cid] < min_observation) // this camera shall be removed. { /// } else { pv[pid]++; } } points_removed = 0; for (size_t i = 0; i < point_data.size(); ++i) { if (pmask[i] == false) continue; if (pv[i] >= 2) continue; pmask[i] = false; points_removed++; } } while (points_removed > 0); //////////////////////////////////// vector cmask(camera_data.size(), true); for (size_t i = 0; i < camera_data.size(); ++i) cmask[i] = cv[i] >= min_observation; //////////////////////////////////////////////////////// vector cidx(camera_data.size()); vector pidx(point_data.size()); /// modified model. vector camera_data2; vector point_data2; vector ptidx2; vector camidx2; vector measurements2; vector names2; vector ptc2; // if (names.size() < camera_data.size()) names.resize(camera_data.size(), string("unknown")); if (ptc.size() < 3 * point_data.size()) ptc.resize(point_data.size() * 3, 0); ////////////////////////////// int new_camera_count = 0, new_point_count = 0; for (size_t i = 0; i < camera_data.size(); ++i) { if (!cmask[i]) continue; camera_data2.push_back(camera_data[i]); names2.push_back(names[i]); cidx[i] = new_camera_count++; } for (size_t i = 0; i < point_data.size(); ++i) { if (!pmask[i]) continue; point_data2.push_back(point_data[i]); ptc.push_back(ptc[i]); pidx[i] = new_point_count++; } int new_observation_count = 0; for (size_t i = 0; i < ptidx.size(); ++i) { int pid = ptidx[i], cid = camidx[i]; if (!pmask[pid] || !cmask[cid]) continue; ptidx2.push_back(pidx[pid]); camidx2.push_back(cidx[cid]); measurements2.push_back(measurements[i]); new_observation_count++; } std::cout << "NOTE: removing " << (camera_data.size() - new_camera_count) << " cameras; " << (point_data.size() - new_point_count) << " 3D Points; " << (measurements.size() - new_observation_count) << " Observations;\n"; camera_data2.swap(camera_data); names2.swap(names); point_data2.swap(point_data); ptc2.swap(ptc); ptidx2.swap(ptidx); camidx2.swap(camidx); measurements2.swap(measurements); return true; } void SaveModelFile(const char* outpath, vector& camera_data, vector& point_data, vector& measurements, vector& ptidx, vector& camidx, vector& names, vector& ptc) { if (outpath == NULL) return; if (strstr(outpath, ".nvm")) SaveNVM(outpath, camera_data, point_data, measurements, ptidx, camidx, names, ptc); else if (strstr(outpath, ".out")) SaveBundlerOut(outpath, camera_data, point_data, measurements, ptidx, camidx, names, ptc); else SaveBundlerModel(outpath, camera_data, point_data, measurements, ptidx, camidx); } } // namespace pba