//////////////////////////////////////////////////////////////////////////// // File: ProgramCU.cu // Author: Changchang Wu // Description : implementation of ProgramCU and all CUDA kernels // // Copyright (c) 2007 University of North Carolina at Chapel Hill // All Rights Reserved // // Permission to use, copy, modify and distribute this software and its // documentation for educational, research and non-profit purposes, without // fee, and without a written agreement is hereby granted, provided that the // above copyright notice and the following paragraph appear in all copies. // // The University of North Carolina at Chapel Hill make no representations // about the suitability of this software for any purpose. It is provided // 'as is' without express or implied warranty. // // Please send BUG REPORTS to ccwu@cs.unc.edu // //////////////////////////////////////////////////////////////////////////// #if defined(CUDA_SIFTGPU_ENABLED) #include "GL/glew.h" #include "stdio.h" #include "CuTexImage.h" #include "ProgramCU.h" #include "GlobalUtil.h" //---------------------------------------------------------------- //Begin SiftGPU setting section. ////////////////////////////////////////////////////////// #define IMUL(X,Y) __mul24(X,Y) //#define FDIV(X,Y) ((X)/(Y)) #define FDIV(X,Y) __fdividef(X,Y) ///////////////////////////////////////////////////////// //filter kernel width range (don't change this) #define KERNEL_MAX_WIDTH 33 #define KERNEL_MIN_WIDTH 5 ////////////////////////////////////////////////////////// //horizontal filter block size (32, 64, 128, 256, 512) #define FILTERH_TILE_WIDTH 128 //thread block for vertical filter. FILTERV_BLOCK_WIDTH can be (4, 8 or 16) #define FILTERV_BLOCK_WIDTH 16 #define FILTERV_BLOCK_HEIGHT 32 //The corresponding image patch for a thread block #define FILTERV_PIXEL_PER_THREAD 4 #define FILTERV_TILE_WIDTH FILTERV_BLOCK_WIDTH #define FILTERV_TILE_HEIGHT (FILTERV_PIXEL_PER_THREAD * FILTERV_BLOCK_HEIGHT) ////////////////////////////////////////////////////////// //thread block size for computing Difference of Gaussian #define DOG_BLOCK_LOG_DIMX 7 #define DOG_BLOCK_LOG_DIMY 0 #define DOG_BLOCK_DIMX (1 << DOG_BLOCK_LOG_DIMX) #define DOG_BLOCK_DIMY (1 << DOG_BLOCK_LOG_DIMY) ////////////////////////////////////////////////////////// //thread block size for keypoint detection #define KEY_BLOCK_LOG_DIMX 3 #define KEY_BLOCK_LOG_DIMY 3 #define KEY_BLOCK_DIMX (1<<KEY_BLOCK_LOG_DIMX) #define KEY_BLOCK_DIMY (1<<KEY_BLOCK_LOG_DIMY) //#define KEY_OFFSET_ONE //make KEY_BLOCK_LOG_DIMX 4 will make the write coalesced.. //but it seems uncoalesced writes don't affect the speed ////////////////////////////////////////////////////////// //thread block size for initializing list generation (64, 128, 256, 512 ...) #define HIST_INIT_WIDTH 128 //thread block size for generating feature list (32, 64, 128, 256, 512, ...) #define LISTGEN_BLOCK_DIM 128 ///////////////////////////////////////////////////////// //how many keypoint orientations to compute in a block #define ORIENTATION_COMPUTE_PER_BLOCK 64 //how many keypoint descriptor to compute in a block (2, 4, 8, 16, 32) #define DESCRIPTOR_COMPUTE_PER_BLOCK 4 #define DESCRIPTOR_COMPUTE_BLOCK_SIZE (16 * DESCRIPTOR_COMPUTE_PER_BLOCK) //how many keypoint descriptor to normalized in a block (32, ...) #define DESCRIPTOR_NORMALIZ_PER_BLOCK 32 /////////////////////////////////////////// //Thread block size for visualization //(This doesn't affect the speed of computation) #define BLOCK_LOG_DIM 4 #define BLOCK_DIM (1 << BLOCK_LOG_DIM) //End SiftGPU setting section. //---------------------------------------------------------------- __device__ __constant__ float d_kernel[KERNEL_MAX_WIDTH]; texture<float, 1, cudaReadModeElementType> texData; texture<unsigned char, 1, cudaReadModeNormalizedFloat> texDataB; texture<float2, 2, cudaReadModeElementType> texDataF2; texture<float4, 1, cudaReadModeElementType> texDataF4; texture<int4, 1, cudaReadModeElementType> texDataI4; texture<int4, 1, cudaReadModeElementType> texDataList; //template<int i> __device__ float Conv(float *data) { return Conv<i-1>(data) + data[i]*d_kernel[i];} //template<> __device__ float Conv<0>(float *data) { return data[0] * d_kernel[0]; } ////////////////////////////////////////////////////////////// template<int FW> __global__ void FilterH( float* d_result, int width) { const int HALF_WIDTH = FW >> 1; const int CACHE_WIDTH = FILTERH_TILE_WIDTH + FW -1; const int CACHE_COUNT = 2 + (CACHE_WIDTH - 2)/ FILTERH_TILE_WIDTH; __shared__ float data[CACHE_WIDTH]; const int bcol = IMUL(blockIdx.x, FILTERH_TILE_WIDTH); const int col = bcol + threadIdx.x; const int index_min = IMUL(blockIdx.y, width); const int index_max = index_min + width - 1; int src_index = index_min + bcol - HALF_WIDTH + threadIdx.x; int cache_index = threadIdx.x; float value = 0; #pragma unroll for(int j = 0; j < CACHE_COUNT; ++j) { if(cache_index < CACHE_WIDTH) { int fetch_index = src_index < index_min? index_min : (src_index > index_max ? index_max : src_index); data[cache_index] = tex1Dfetch(texData,fetch_index); src_index += FILTERH_TILE_WIDTH; cache_index += FILTERH_TILE_WIDTH; } } __syncthreads(); if(col >= width) return; #pragma unroll for(int i = 0; i < FW; ++i) { value += (data[threadIdx.x + i]* d_kernel[i]); } // value = Conv<FW-1>(data + threadIdx.x); d_result[index_min + col] = value; } //////////////////////////////////////////////////////////////////// template<int FW> __global__ void FilterV(float* d_result, int width, int height) { const int HALF_WIDTH = FW >> 1; const int CACHE_WIDTH = FW + FILTERV_TILE_HEIGHT - 1; const int TEMP = CACHE_WIDTH & 0xf; //add some extra space to avoid bank conflict #if FILTERV_TILE_WIDTH == 16 //make the stride 16 * n +/- 1 const int EXTRA = (TEMP == 1 || TEMP == 0) ? 1 - TEMP : 15 - TEMP; #elif FILTERV_TILE_WIDTH == 8 //make the stride 16 * n +/- 2 const int EXTRA = (TEMP == 2 || TEMP == 1 || TEMP == 0) ? 2 - TEMP : (TEMP == 15? 3 : 14 - TEMP); #elif FILTERV_TILE_WIDTH == 4 //make the stride 16 * n +/- 4 const int EXTRA = (TEMP >=0 && TEMP <=4) ? 4 - TEMP : (TEMP > 12? 20 - TEMP : 12 - TEMP); #else #error #endif const int CACHE_TRUE_WIDTH = CACHE_WIDTH + EXTRA; const int CACHE_COUNT = (CACHE_WIDTH + FILTERV_BLOCK_HEIGHT - 1) / FILTERV_BLOCK_HEIGHT; const int WRITE_COUNT = (FILTERV_TILE_HEIGHT + FILTERV_BLOCK_HEIGHT -1) / FILTERV_BLOCK_HEIGHT; __shared__ float data[CACHE_TRUE_WIDTH * FILTERV_TILE_WIDTH]; const int row_block_first = IMUL(blockIdx.y, FILTERV_TILE_HEIGHT); const int col = IMUL(blockIdx.x, FILTERV_TILE_WIDTH) + threadIdx.x; const int row_first = row_block_first - HALF_WIDTH; const int data_index_max = IMUL(height - 1, width) + col; const int cache_col_start = threadIdx.y; const int cache_row_start = IMUL(threadIdx.x, CACHE_TRUE_WIDTH); int cache_index = cache_col_start + cache_row_start; int data_index = IMUL(row_first + cache_col_start, width) + col; if(col < width) { #pragma unroll for(int i = 0; i < CACHE_COUNT; ++i) { if(cache_col_start < CACHE_WIDTH - i * FILTERV_BLOCK_HEIGHT) { int fetch_index = data_index < col ? col : (data_index > data_index_max? data_index_max : data_index); data[cache_index + i * FILTERV_BLOCK_HEIGHT] = tex1Dfetch(texData,fetch_index); data_index += IMUL(FILTERV_BLOCK_HEIGHT, width); } } } __syncthreads(); if(col >= width) return; int row = row_block_first + threadIdx.y; int index_start = cache_row_start + threadIdx.y; #pragma unroll for(int i = 0; i < WRITE_COUNT; ++i, row += FILTERV_BLOCK_HEIGHT, index_start += FILTERV_BLOCK_HEIGHT) { if(row < height) { int index_dest = IMUL(row, width) + col; float value = 0; #pragma unroll for(int i = 0; i < FW; ++i) { value += (data[index_start + i] * d_kernel[i]); } d_result[index_dest] = value; } } } template<int LOG_SCALE> __global__ void UpsampleKernel(float* d_result, int width) { const int SCALE = (1 << LOG_SCALE), SCALE_MASK = (SCALE - 1); const float INV_SCALE = 1.0f / (float(SCALE)); int col = IMUL(blockIdx.x, FILTERH_TILE_WIDTH) + threadIdx.x; if(col >= width) return; int row = blockIdx.y >> LOG_SCALE; int index = row * width + col; int dst_row = blockIdx.y; int dst_idx= (width * dst_row + col) * SCALE; int helper = blockIdx.y & SCALE_MASK; if (helper) { float v11 = tex1Dfetch(texData, index); float v12 = tex1Dfetch(texData, index + 1); index += width; float v21 = tex1Dfetch(texData, index); float v22 = tex1Dfetch(texData, index + 1); float w1 = INV_SCALE * helper, w2 = 1.0 - w1; float v1 = (v21 * w1 + w2 * v11); float v2 = (v22 * w1 + w2 * v12); d_result[dst_idx] = v1; #pragma unroll for(int i = 1; i < SCALE; ++i) { const float r2 = i * INV_SCALE; const float r1 = 1.0f - r2; d_result[dst_idx +i] = v1 * r1 + v2 * r2; } }else { float v1 = tex1Dfetch(texData, index); float v2 = tex1Dfetch(texData, index + 1); d_result[dst_idx] = v1; #pragma unroll for(int i = 1; i < SCALE; ++i) { const float r2 = i * INV_SCALE; const float r1 = 1.0f - r2; d_result[dst_idx +i] = v1 * r1 + v2 * r2; } } } //////////////////////////////////////////////////////////////////////////////////////// void ProgramCU::SampleImageU(CuTexImage *dst, CuTexImage *src, int log_scale) { int width = src->GetImgWidth(), height = src->GetImgHeight(); src->BindTexture(texData); dim3 grid((width + FILTERH_TILE_WIDTH - 1)/ FILTERH_TILE_WIDTH, height << log_scale); dim3 block(FILTERH_TILE_WIDTH); switch(log_scale) { case 1 : UpsampleKernel<1> <<< grid, block>>> ((float*) dst->_cuData, width); break; case 2 : UpsampleKernel<2> <<< grid, block>>> ((float*) dst->_cuData, width); break; case 3 : UpsampleKernel<3> <<< grid, block>>> ((float*) dst->_cuData, width); break; default: break; } } template<int LOG_SCALE> __global__ void DownsampleKernel(float* d_result, int src_width, int dst_width) { const int dst_col = IMUL(blockIdx.x, FILTERH_TILE_WIDTH) + threadIdx.x; if(dst_col >= dst_width) return; const int src_col = min((dst_col << LOG_SCALE), (src_width - 1)); const int dst_row = blockIdx.y; const int src_row = blockIdx.y << LOG_SCALE; const int src_idx = IMUL(src_row, src_width) + src_col; const int dst_idx = IMUL(dst_width, dst_row) + dst_col; d_result[dst_idx] = tex1Dfetch(texData, src_idx); } __global__ void DownsampleKernel(float* d_result, int src_width, int dst_width, const int log_scale) { const int dst_col = IMUL(blockIdx.x, FILTERH_TILE_WIDTH) + threadIdx.x; if(dst_col >= dst_width) return; const int src_col = min((dst_col << log_scale), (src_width - 1)); const int dst_row = blockIdx.y; const int src_row = blockIdx.y << log_scale; const int src_idx = IMUL(src_row, src_width) + src_col; const int dst_idx = IMUL(dst_width, dst_row) + dst_col; d_result[dst_idx] = tex1Dfetch(texData, src_idx); } void ProgramCU::SampleImageD(CuTexImage *dst, CuTexImage *src, int log_scale) { int src_width = src->GetImgWidth(), dst_width = dst->GetImgWidth() ; src->BindTexture(texData); dim3 grid((dst_width + FILTERH_TILE_WIDTH - 1)/ FILTERH_TILE_WIDTH, dst->GetImgHeight()); dim3 block(FILTERH_TILE_WIDTH); switch(log_scale) { case 1 : DownsampleKernel<1> <<< grid, block>>> ((float*) dst->_cuData, src_width, dst_width); break; case 2 : DownsampleKernel<2> <<< grid, block>>> ((float*) dst->_cuData, src_width, dst_width); break; case 3 : DownsampleKernel<3> <<< grid, block>>> ((float*) dst->_cuData, src_width, dst_width); break; default: DownsampleKernel <<< grid, block>>> ((float*) dst->_cuData, src_width, dst_width, log_scale); } } __global__ void ChannelReduce_Kernel(float* d_result) { int index = IMUL(blockIdx.x, FILTERH_TILE_WIDTH) + threadIdx.x; d_result[index] = tex1Dfetch(texData, index*4); } __global__ void ChannelReduce_Convert_Kernel(float* d_result) { int index = IMUL(blockIdx.x, FILTERH_TILE_WIDTH) + threadIdx.x; float4 rgba = tex1Dfetch(texDataF4, index); d_result[index] = 0.299f * rgba.x + 0.587f* rgba.y + 0.114f * rgba.z; } void ProgramCU::ReduceToSingleChannel(CuTexImage* dst, CuTexImage* src, int convert_rgb) { int width = src->GetImgWidth(), height = dst->GetImgHeight() ; dim3 grid((width * height + FILTERH_TILE_WIDTH - 1)/ FILTERH_TILE_WIDTH); dim3 block(FILTERH_TILE_WIDTH); if(convert_rgb) { src->BindTexture(texDataF4); ChannelReduce_Convert_Kernel<<<grid, block>>>((float*)dst->_cuData); }else { src->BindTexture(texData); ChannelReduce_Kernel<<<grid, block>>>((float*)dst->_cuData); } } __global__ void ConvertByteToFloat_Kernel(float* d_result) { int index = IMUL(blockIdx.x, FILTERH_TILE_WIDTH) + threadIdx.x; d_result[index] = tex1Dfetch(texDataB, index); } void ProgramCU::ConvertByteToFloat(CuTexImage*src, CuTexImage* dst) { int width = src->GetImgWidth(), height = dst->GetImgHeight() ; dim3 grid((width * height + FILTERH_TILE_WIDTH - 1)/ FILTERH_TILE_WIDTH); dim3 block(FILTERH_TILE_WIDTH); src->BindTexture(texDataB); ConvertByteToFloat_Kernel<<<grid, block>>>((float*)dst->_cuData); } void ProgramCU::CreateFilterKernel(float sigma, float* kernel, int& width) { int i, sz = int( ceil( GlobalUtil::_FilterWidthFactor * sigma -0.5) ) ;// width = 2*sz + 1; if(width > KERNEL_MAX_WIDTH) { //filter size truncation sz = KERNEL_MAX_WIDTH >> 1; width =KERNEL_MAX_WIDTH; }else if(width < KERNEL_MIN_WIDTH) { sz = KERNEL_MIN_WIDTH >> 1; width =KERNEL_MIN_WIDTH; } float rv = 1.0f/(sigma*sigma), v, ksum =0; // pre-compute filter for( i = -sz ; i <= sz ; ++i) { kernel[i+sz] = v = exp(-0.5f * i * i *rv) ; ksum += v; } //normalize the kernel rv = 1.0f/ksum; for(i = 0; i< width ;i++) kernel[i]*=rv; } template<int FW> void ProgramCU::FilterImage(CuTexImage *dst, CuTexImage *src, CuTexImage* buf) { int width = src->GetImgWidth(), height = src->GetImgHeight(); //horizontal filtering src->BindTexture(texData); dim3 gridh((width + FILTERH_TILE_WIDTH - 1)/ FILTERH_TILE_WIDTH, height); dim3 blockh(FILTERH_TILE_WIDTH); FilterH<FW><<<gridh, blockh>>>((float*)buf->_cuData, width); CheckErrorCUDA("FilterH"); ///vertical filtering buf->BindTexture(texData); dim3 gridv((width + FILTERV_TILE_WIDTH - 1)/ FILTERV_TILE_WIDTH, (height + FILTERV_TILE_HEIGHT - 1)/FILTERV_TILE_HEIGHT); dim3 blockv(FILTERV_TILE_WIDTH, FILTERV_BLOCK_HEIGHT); FilterV<FW><<<gridv, blockv>>>((float*)dst->_cuData, width, height); CheckErrorCUDA("FilterV"); } ////////////////////////////////////////////////////////////////////// // tested on 2048x1500 image, the time on pyramid construction is // OpenGL version : 18ms // CUDA version: 28 ms void ProgramCU::FilterImage(CuTexImage *dst, CuTexImage *src, CuTexImage* buf, float sigma) { float filter_kernel[KERNEL_MAX_WIDTH]; int width; CreateFilterKernel(sigma, filter_kernel, width); cudaMemcpyToSymbol(d_kernel, filter_kernel, width * sizeof(float), 0, cudaMemcpyHostToDevice); switch(width) { case 5: FilterImage< 5>(dst, src, buf); break; case 7: FilterImage< 7>(dst, src, buf); break; case 9: FilterImage< 9>(dst, src, buf); break; case 11: FilterImage<11>(dst, src, buf); break; case 13: FilterImage<13>(dst, src, buf); break; case 15: FilterImage<15>(dst, src, buf); break; case 17: FilterImage<17>(dst, src, buf); break; case 19: FilterImage<19>(dst, src, buf); break; case 21: FilterImage<21>(dst, src, buf); break; case 23: FilterImage<23>(dst, src, buf); break; case 25: FilterImage<25>(dst, src, buf); break; case 27: FilterImage<27>(dst, src, buf); break; case 29: FilterImage<29>(dst, src, buf); break; case 31: FilterImage<31>(dst, src, buf); break; case 33: FilterImage<33>(dst, src, buf); break; default: break; } } texture<float, 1, cudaReadModeElementType> texC; texture<float, 1, cudaReadModeElementType> texP; texture<float, 1, cudaReadModeElementType> texN; void __global__ ComputeDOG_Kernel(float* d_dog, float2* d_got, int width, int height) { int row = (blockIdx.y << DOG_BLOCK_LOG_DIMY) + threadIdx.y; int col = (blockIdx.x << DOG_BLOCK_LOG_DIMX) + threadIdx.x; if(col < width && row < height) { int index = IMUL(row, width) + col; float vp = tex1Dfetch(texP, index); float v = tex1Dfetch(texC, index); d_dog[index] = v - vp; float vxn = tex1Dfetch(texC, index + 1); float vxp = tex1Dfetch(texC, index - 1); float vyp = tex1Dfetch(texC, index - width); float vyn = tex1Dfetch(texC, index + width); float dx = vxn - vxp, dy = vyn - vyp; float grd = 0.5f * sqrt(dx * dx + dy * dy); float rot = (grd == 0.0f? 0.0f : atan2(dy, dx)); d_got[index] = make_float2(grd, rot); } } void __global__ ComputeDOG_Kernel(float* d_dog, int width, int height) { int row = (blockIdx.y << DOG_BLOCK_LOG_DIMY) + threadIdx.y; int col = (blockIdx.x << DOG_BLOCK_LOG_DIMX) + threadIdx.x; if(col < width && row < height) { int index = IMUL(row, width) + col; float vp = tex1Dfetch(texP, index); float v = tex1Dfetch(texC, index); d_dog[index] = v - vp; } } void ProgramCU::ComputeDOG(CuTexImage* gus, CuTexImage* dog, CuTexImage* got) { int width = gus->GetImgWidth(), height = gus->GetImgHeight(); dim3 grid((width + DOG_BLOCK_DIMX - 1)/ DOG_BLOCK_DIMX, (height + DOG_BLOCK_DIMY - 1)/DOG_BLOCK_DIMY); dim3 block(DOG_BLOCK_DIMX, DOG_BLOCK_DIMY); gus->BindTexture(texC); (gus -1)->BindTexture(texP); if(got->_cuData) ComputeDOG_Kernel<<<grid, block>>>((float*) dog->_cuData, (float2*) got->_cuData, width, height); else ComputeDOG_Kernel<<<grid, block>>>((float*) dog->_cuData, width, height); } #define READ_CMP_DOG_DATA(datai, tex, idx) \ datai[0] = tex1Dfetch(tex, idx - 1);\ datai[1] = tex1Dfetch(tex, idx);\ datai[2] = tex1Dfetch(tex, idx + 1);\ if(v > nmax)\ {\ nmax = max(nmax, datai[0]);\ nmax = max(nmax, datai[1]);\ nmax = max(nmax, datai[2]);\ if(v < nmax) goto key_finish;\ }else\ {\ nmin = min(nmin, datai[0]);\ nmin = min(nmin, datai[1]);\ nmin = min(nmin, datai[2]);\ if(v > nmin) goto key_finish;\ } void __global__ ComputeKEY_Kernel(float4* d_key, int width, int colmax, int rowmax, float dog_threshold0, float dog_threshold, float edge_threshold, int subpixel_localization) { float data[3][3], v; float datap[3][3], datan[3][3]; #ifdef KEY_OFFSET_ONE int row = (blockIdx.y << KEY_BLOCK_LOG_DIMY) + threadIdx.y + 1; int col = (blockIdx.x << KEY_BLOCK_LOG_DIMX) + threadIdx.x + 1; #else int row = (blockIdx.y << KEY_BLOCK_LOG_DIMY) + threadIdx.y; int col = (blockIdx.x << KEY_BLOCK_LOG_DIMX) + threadIdx.x; #endif int index = IMUL(row, width) + col; int idx[3] ={index - width, index, index + width}; int in_image =0; float nmax, nmin, result = 0.0f; float dx = 0, dy = 0, ds = 0; bool offset_test_passed = true; #ifdef KEY_OFFSET_ONE if(row < rowmax && col < colmax) #else if(row > 0 && col > 0 && row < rowmax && col < colmax) #endif { in_image = 1; data[1][1] = v = tex1Dfetch(texC, idx[1]); if(fabs(v) <= dog_threshold0) goto key_finish; data[1][0] = tex1Dfetch(texC, idx[1] - 1); data[1][2] = tex1Dfetch(texC, idx[1] + 1); nmax = max(data[1][0], data[1][2]); nmin = min(data[1][0], data[1][2]); if(v <=nmax && v >= nmin) goto key_finish; //if((v > nmax && v < 0 )|| (v < nmin && v > 0)) goto key_finish; READ_CMP_DOG_DATA(data[0], texC, idx[0]); READ_CMP_DOG_DATA(data[2], texC, idx[2]); //edge supression float vx2 = v * 2.0f; float fxx = data[1][0] + data[1][2] - vx2; float fyy = data[0][1] + data[2][1] - vx2; float fxy = 0.25f * (data[2][2] + data[0][0] - data[2][0] - data[0][2]); float temp1 = fxx * fyy - fxy * fxy; float temp2 = (fxx + fyy) * (fxx + fyy); if(temp1 <=0 || temp2 > edge_threshold * temp1) goto key_finish; //read the previous level READ_CMP_DOG_DATA(datap[0], texP, idx[0]); READ_CMP_DOG_DATA(datap[1], texP, idx[1]); READ_CMP_DOG_DATA(datap[2], texP, idx[2]); //read the next level READ_CMP_DOG_DATA(datan[0], texN, idx[0]); READ_CMP_DOG_DATA(datan[1], texN, idx[1]); READ_CMP_DOG_DATA(datan[2], texN, idx[2]); if(subpixel_localization) { //subpixel localization float fx = 0.5f * (data[1][2] - data[1][0]); float fy = 0.5f * (data[2][1] - data[0][1]); float fs = 0.5f * (datan[1][1] - datap[1][1]); float fss = (datan[1][1] + datap[1][1] - vx2); float fxs = 0.25f* (datan[1][2] + datap[1][0] - datan[1][0] - datap[1][2]); float fys = 0.25f* (datan[2][1] + datap[0][1] - datan[0][1] - datap[2][1]); //need to solve dx, dy, ds; // |-fx| | fxx fxy fxs | |dx| // |-fy| = | fxy fyy fys | * |dy| // |-fs| | fxs fys fss | |ds| float4 A0 = fxx > 0? make_float4(fxx, fxy, fxs, -fx) : make_float4(-fxx, -fxy, -fxs, fx); float4 A1 = fxy > 0? make_float4(fxy, fyy, fys, -fy) : make_float4(-fxy, -fyy, -fys, fy); float4 A2 = fxs > 0? make_float4(fxs, fys, fss, -fs) : make_float4(-fxs, -fys, -fss, fs); float maxa = max(max(A0.x, A1.x), A2.x); if(maxa >= 1e-10) { if(maxa == A1.x) { float4 TEMP = A1; A1 = A0; A0 = TEMP; }else if(maxa == A2.x) { float4 TEMP = A2; A2 = A0; A0 = TEMP; } A0.y /= A0.x; A0.z /= A0.x; A0.w/= A0.x; A1.y -= A1.x * A0.y; A1.z -= A1.x * A0.z; A1.w -= A1.x * A0.w; A2.y -= A2.x * A0.y; A2.z -= A2.x * A0.z; A2.w -= A2.x * A0.w; if(abs(A2.y) > abs(A1.y)) { float4 TEMP = A2; A2 = A1; A1 = TEMP; } if(abs(A1.y) >= 1e-10) { A1.z /= A1.y; A1.w /= A1.y; A2.z -= A2.y * A1.z; A2.w -= A2.y * A1.w; if(abs(A2.z) >= 1e-10) { ds = A2.w / A2.z; dy = A1.w - ds * A1.z; dx = A0.w - ds * A0.z - dy * A0.y; offset_test_passed = fabs(data[1][1] + 0.5f * (dx * fx + dy * fy + ds * fs)) > dog_threshold &&fabs(ds) < 1.0f && fabs(dx) < 1.0f && fabs(dy) < 1.0f; } } } } if(offset_test_passed) result = v > nmax ? 1.0 : -1.0; } key_finish: if(in_image) d_key[index] = make_float4(result, dx, dy, ds); } void ProgramCU::ComputeKEY(CuTexImage* dog, CuTexImage* key, float Tdog, float Tedge) { int width = dog->GetImgWidth(), height = dog->GetImgHeight(); float Tdog1 = (GlobalUtil::_SubpixelLocalization? 0.8f : 1.0f) * Tdog; CuTexImage* dogp = dog - 1; CuTexImage* dogn = dog + 1; #ifdef KEY_OFFSET_ONE dim3 grid((width - 1 + KEY_BLOCK_DIMX - 1)/ KEY_BLOCK_DIMX, (height - 1 + KEY_BLOCK_DIMY - 1)/KEY_BLOCK_DIMY); #else dim3 grid((width + KEY_BLOCK_DIMX - 1)/ KEY_BLOCK_DIMX, (height + KEY_BLOCK_DIMY - 1)/KEY_BLOCK_DIMY); #endif dim3 block(KEY_BLOCK_DIMX, KEY_BLOCK_DIMY); dogp->BindTexture(texP); dog ->BindTexture(texC); dogn->BindTexture(texN); Tedge = (Tedge+1)*(Tedge+1)/Tedge; ComputeKEY_Kernel<<<grid, block>>>((float4*) key->_cuData, width, width -1, height -1, Tdog1, Tdog, Tedge, GlobalUtil::_SubpixelLocalization); } void __global__ InitHist_Kernel(int4* hist, int ws, int wd, int height) { int row = IMUL(blockIdx.y, blockDim.y) + threadIdx.y; int col = IMUL(blockIdx.x, blockDim.x) + threadIdx.x; if(row < height && col < wd) { int hidx = IMUL(row, wd) + col; int scol = col << 2; int sidx = IMUL(row, ws) + scol; int v[4] = {0, 0, 0, 0}; if(row > 0 && row < height -1) { #pragma unroll for(int i = 0; i < 4 ; ++i, ++scol) { float4 temp = tex1Dfetch(texDataF4, sidx +i); v[i] = (scol < ws -1 && scol > 0 && temp.x!=0) ? 1 : 0; } } hist[hidx] = make_int4(v[0], v[1], v[2], v[3]); } } void ProgramCU::InitHistogram(CuTexImage* key, CuTexImage* hist) { int ws = key->GetImgWidth(), hs = key->GetImgHeight(); int wd = hist->GetImgWidth(), hd = hist->GetImgHeight(); dim3 grid((wd + HIST_INIT_WIDTH - 1)/ HIST_INIT_WIDTH, hd); dim3 block(HIST_INIT_WIDTH, 1); key->BindTexture(texDataF4); InitHist_Kernel<<<grid, block>>>((int4*) hist->_cuData, ws, wd, hd); } void __global__ ReduceHist_Kernel(int4* d_hist, int ws, int wd, int height) { int row = IMUL(blockIdx.y, blockDim.y) + threadIdx.y; int col = IMUL(blockIdx.x, blockDim.x) + threadIdx.x; if(row < height && col < wd) { int hidx = IMUL(row, wd) + col; int scol = col << 2; int sidx = IMUL(row, ws) + scol; int v[4] = {0, 0, 0, 0}; #pragma unroll for(int i = 0; i < 4 && scol < ws; ++i, ++scol) { int4 temp = tex1Dfetch(texDataI4, sidx + i); v[i] = temp.x + temp.y + temp.z + temp.w; } d_hist[hidx] = make_int4(v[0], v[1], v[2], v[3]); } } void ProgramCU::ReduceHistogram(CuTexImage*hist1, CuTexImage* hist2) { int ws = hist1->GetImgWidth(), hs = hist1->GetImgHeight(); int wd = hist2->GetImgWidth(), hd = hist2->GetImgHeight(); int temp = (int)floorf(logf(float(wd * 2/ 3)) / logf(2.0f)); const int wi = min(7, max(temp , 0)); hist1->BindTexture(texDataI4); const int BW = 1 << wi, BH = 1 << (7 - wi); dim3 grid((wd + BW - 1)/ BW, (hd + BH -1) / BH); dim3 block(BW, BH); ReduceHist_Kernel<<<grid, block>>>((int4*)hist2->_cuData, ws, wd, hd); } void __global__ ListGen_Kernel(int4* d_list, int list_len, int width) { int idx1 = IMUL(blockIdx.x, blockDim.x) + threadIdx.x; int4 pos = tex1Dfetch(texDataList, idx1); int idx2 = IMUL(pos.y, width) + pos.x; int4 temp = tex1Dfetch(texDataI4, idx2); int sum1 = temp.x + temp.y; int sum2 = sum1 + temp.z; pos.x <<= 2; if(pos.z >= sum2) { pos.x += 3; pos.z -= sum2; }else if(pos.z >= sum1) { pos.x += 2; pos.z -= sum1; }else if(pos.z >= temp.x) { pos.x += 1; pos.z -= temp.x; } if (idx1 < list_len) { d_list[idx1] = pos; } } //input list (x, y) (x, y) .... void ProgramCU::GenerateList(CuTexImage* list, CuTexImage* hist) { int len = list->GetImgWidth(); list->BindTexture(texDataList); hist->BindTexture(texDataI4); dim3 grid((len + LISTGEN_BLOCK_DIM -1) /LISTGEN_BLOCK_DIM); dim3 block(LISTGEN_BLOCK_DIM); ListGen_Kernel<<<grid, block>>>((int4*) list->_cuData, len, hist->GetImgWidth()); } void __global__ ComputeOrientation_Kernel(float4* d_list, int list_len, int width, int height, float sigma, float sigma_step, float gaussian_factor, float sample_factor, int num_orientation, int existing_keypoint, int subpixel, int keepsign) { const float ten_degree_per_radius = 5.7295779513082320876798154814105; const float radius_per_ten_degrees = 1.0 / 5.7295779513082320876798154814105; int idx = IMUL(blockDim.x, blockIdx.x) + threadIdx.x; if(idx >= list_len) return; float4 key; if(existing_keypoint) { key = tex1Dfetch(texDataF4, idx); }else { int4 ikey = tex1Dfetch(texDataList, idx); key.x = ikey.x + 0.5f; key.y = ikey.y + 0.5f; key.z = sigma; if(subpixel || keepsign) { float4 offset = tex1Dfetch(texDataF4, IMUL(width, ikey.y) + ikey.x); if(subpixel) { key.x += offset.y; key.y += offset.z; key.z *= pow(sigma_step, offset.w); } if(keepsign) key.z *= offset.x; } } if(num_orientation == 0) { key.w = 0; d_list[idx] = key; return; } float vote[37]; float gsigma = key.z * gaussian_factor; float win = fabs(key.z) * sample_factor; float dist_threshold = win * win + 0.5; float factor = -0.5f / (gsigma * gsigma); float xmin = max(1.5f, floorf(key.x - win) + 0.5f); float ymin = max(1.5f, floorf(key.y - win) + 0.5f); float xmax = min(width - 1.5f, floorf(key.x + win) + 0.5f); float ymax = min(height -1.5f, floorf(key.y + win) + 0.5f); #pragma unroll for(int i = 0; i < 36; ++i) vote[i] = 0.0f; for(float y = ymin; y <= ymax; y += 1.0f) { for(float x = xmin; x <= xmax; x += 1.0f) { float dx = x - key.x; float dy = y - key.y; float sq_dist = dx * dx + dy * dy; if(sq_dist >= dist_threshold) continue; float2 got = tex2D(texDataF2, x, y); float weight = got.x * exp(sq_dist * factor); float fidx = floorf(got.y * ten_degree_per_radius); int oidx = fidx; if(oidx < 0) oidx += 36; vote[oidx] += weight; } } //filter the vote const float one_third = 1.0 /3.0; #pragma unroll for(int i = 0; i < 6; ++i) { vote[36] = vote[0]; float pre = vote[35]; #pragma unroll for(int j = 0; j < 36; ++j) { float temp = one_third * (pre + vote[j] + vote[j + 1]); pre = vote[j]; vote[j] = temp; } } vote[36] = vote[0]; if(num_orientation == 1 || existing_keypoint) { int index_max = 0; float max_vote = vote[0]; #pragma unroll for(int i = 1; i < 36; ++i) { index_max = vote[i] > max_vote? i : index_max; max_vote = max(max_vote, vote[i]); } float pre = vote[index_max == 0? 35 : index_max -1]; float next = vote[index_max + 1]; float weight = max_vote; float off = 0.5f * FDIV(next - pre, weight + weight - next - pre); key.w = radius_per_ten_degrees * (index_max + 0.5f + off); d_list[idx] = key; }else { float max_vote = vote[0]; #pragma unroll for(int i = 1; i < 36; ++i) max_vote = max(max_vote, vote[i]); float vote_threshold = max_vote * 0.8f; float pre = vote[35]; float max_rot[2], max_vot[2] = {0, 0}; int ocount = 0; #pragma unroll for(int i =0; i < 36; ++i) { float next = vote[i + 1]; if(vote[i] > vote_threshold && vote[i] > pre && vote[i] > next) { float di = 0.5f * FDIV(next - pre, vote[i] + vote[i] - next - pre); float rot = i + di + 0.5f; float weight = vote[i]; /// if(weight > max_vot[1]) { if(weight > max_vot[0]) { max_vot[1] = max_vot[0]; max_rot[1] = max_rot[0]; max_vot[0] = weight; max_rot[0] = rot; } else { max_vot[1] = weight; max_rot[1] = rot; } ocount ++; } } pre = vote[i]; } float fr1 = max_rot[0] / 36.0f; if(fr1 < 0) fr1 += 1.0f; unsigned short us1 = ocount == 0? 65535 : ((unsigned short )floorf(fr1 * 65535.0f)); unsigned short us2 = 65535; if(ocount > 1) { float fr2 = max_rot[1] / 36.0f; if(fr2 < 0) fr2 += 1.0f; us2 = (unsigned short ) floorf(fr2 * 65535.0f); } unsigned int uspack = (us2 << 16) | us1; key.w = __int_as_float(uspack); d_list[idx] = key; } } void ProgramCU::ComputeOrientation(CuTexImage* list, CuTexImage* got, CuTexImage*key, float sigma, float sigma_step, int existing_keypoint) { int len = list->GetImgWidth(); if(len <= 0) return; int width = got->GetImgWidth(), height = got->GetImgHeight(); if(existing_keypoint) { list->BindTexture(texDataF4); }else { list->BindTexture(texDataList); if(GlobalUtil::_SubpixelLocalization) key->BindTexture(texDataF4); } got->BindTexture2D(texDataF2); const int block_width = len < ORIENTATION_COMPUTE_PER_BLOCK ? 16 : ORIENTATION_COMPUTE_PER_BLOCK; dim3 grid((len + block_width -1) / block_width); dim3 block(block_width); ComputeOrientation_Kernel<<<grid, block>>>((float4*) list->_cuData, len, width, height, sigma, sigma_step, GlobalUtil::_OrientationGaussianFactor, GlobalUtil::_OrientationGaussianFactor * GlobalUtil::_OrientationWindowFactor, GlobalUtil::_FixedOrientation? 0 : GlobalUtil::_MaxOrientation, existing_keypoint, GlobalUtil::_SubpixelLocalization, GlobalUtil::_KeepExtremumSign); ProgramCU::CheckErrorCUDA("ComputeOrientation"); } template <bool DYNAMIC_INDEXING> void __global__ ComputeDescriptor_Kernel(float4* d_des, int num, int width, int height, float window_factor) { const float rpi = 4.0/ 3.14159265358979323846; int idx = IMUL(blockIdx.x, blockDim.x) + threadIdx.x; int fidx = idx >> 4; if(fidx >= num) return; float4 key = tex1Dfetch(texDataF4, fidx); int bidx = idx& 0xf, ix = bidx & 0x3, iy = bidx >> 2; float spt = fabs(key.z * window_factor); float s, c; __sincosf(key.w, &s, &c); float anglef = key.w > 3.14159265358979323846? key.w - (2.0 * 3.14159265358979323846) : key.w ; float cspt = c * spt, sspt = s * spt; float crspt = c / spt, srspt = s / spt; float2 offsetpt, pt; float xmin, ymin, xmax, ymax, bsz; offsetpt.x = ix - 1.5f; offsetpt.y = iy - 1.5f; pt.x = cspt * offsetpt.x - sspt * offsetpt.y + key.x; pt.y = cspt * offsetpt.y + sspt * offsetpt.x + key.y; bsz = fabs(cspt) + fabs(sspt); xmin = max(1.5f, floorf(pt.x - bsz) + 0.5f); ymin = max(1.5f, floorf(pt.y - bsz) + 0.5f); xmax = min(width - 1.5f, floorf(pt.x + bsz) + 0.5f); ymax = min(height - 1.5f, floorf(pt.y + bsz) + 0.5f); float des[9]; #pragma unroll for(int i =0; i < 9; ++i) des[i] = 0.0f; for(float y = ymin; y <= ymax; y += 1.0f) { for(float x = xmin; x <= xmax; x += 1.0f) { float dx = x - pt.x; float dy = y - pt.y; float nx = crspt * dx + srspt * dy; float ny = crspt * dy - srspt * dx; float nxn = fabs(nx); float nyn = fabs(ny); if(nxn < 1.0f && nyn < 1.0f) { float2 cc = tex2D(texDataF2, x, y); float dnx = nx + offsetpt.x; float dny = ny + offsetpt.y; float ww = exp(-0.125f * (dnx * dnx + dny * dny)); float wx = 1.0 - nxn; float wy = 1.0 - nyn; float weight = ww * wx * wy * cc.x; float theta = (anglef - cc.y) * rpi; if(theta < 0) theta += 8.0f; float fo = floorf(theta); int fidx = fo; float weight1 = fo + 1.0f - theta; float weight2 = theta - fo; if(DYNAMIC_INDEXING) { des[fidx] += (weight1 * weight); des[fidx + 1] += (weight2 * weight); //this dynamic indexing part might be slow }else { #pragma unroll for(int k = 0; k < 8; ++k) { if(k == fidx) { des[k] += (weight1 * weight); des[k+1] += (weight2 * weight); } } } } } } des[0] += des[8]; int didx = idx << 1; d_des[didx] = make_float4(des[0], des[1], des[2], des[3]); d_des[didx+1] = make_float4(des[4], des[5], des[6], des[7]); } template <bool DYNAMIC_INDEXING> void __global__ ComputeDescriptorRECT_Kernel(float4* d_des, int num, int width, int height, float window_factor) { const float rpi = 4.0/ 3.14159265358979323846; int idx = IMUL(blockIdx.x, blockDim.x) + threadIdx.x; int fidx = idx >> 4; if(fidx >= num) return; float4 key = tex1Dfetch(texDataF4, fidx); int bidx = idx& 0xf, ix = bidx & 0x3, iy = bidx >> 2; //float aspect_ratio = key.w / key.z; //float aspect_sq = aspect_ratio * aspect_ratio; float sptx = key.z * 0.25, spty = key.w * 0.25; float xmin, ymin, xmax, ymax; float2 pt; pt.x = sptx * (ix + 0.5f) + key.x; pt.y = spty * (iy + 0.5f) + key.y; xmin = max(1.5f, floorf(pt.x - sptx) + 0.5f); ymin = max(1.5f, floorf(pt.y - spty) + 0.5f); xmax = min(width - 1.5f, floorf(pt.x + sptx) + 0.5f); ymax = min(height - 1.5f, floorf(pt.y + spty) + 0.5f); float des[9]; #pragma unroll for(int i =0; i < 9; ++i) des[i] = 0.0f; for(float y = ymin; y <= ymax; y += 1.0f) { for(float x = xmin; x <= xmax; x += 1.0f) { float nx = (x - pt.x) / sptx; float ny = (y - pt.y) / spty; float nxn = fabs(nx); float nyn = fabs(ny); if(nxn < 1.0f && nyn < 1.0f) { float2 cc = tex2D(texDataF2, x, y); float wx = 1.0 - nxn; float wy = 1.0 - nyn; float weight = wx * wy * cc.x; float theta = (- cc.y) * rpi; if(theta < 0) theta += 8.0f; float fo = floorf(theta); int fidx = fo; float weight1 = fo + 1.0f - theta; float weight2 = theta - fo; if(DYNAMIC_INDEXING) { des[fidx] += (weight1 * weight); des[fidx + 1] += (weight2 * weight); //this dynamic indexing part might be slow }else { #pragma unroll for(int k = 0; k < 8; ++k) { if(k == fidx) { des[k] += (weight1 * weight); des[k+1] += (weight2 * weight); } } } } } } des[0] += des[8]; int didx = idx << 1; d_des[didx] = make_float4(des[0], des[1], des[2], des[3]); d_des[didx+1] = make_float4(des[4], des[5], des[6], des[7]); } void __global__ NormalizeDescriptor_Kernel(float4* d_des, int num) { float4 temp[32]; int idx = IMUL(blockIdx.x, blockDim.x) + threadIdx.x; if(idx >= num) return; int sidx = idx << 5; float norm1 = 0, norm2 = 0; #pragma unroll for(int i = 0; i < 32; ++i) { temp[i] = tex1Dfetch(texDataF4, sidx +i); norm1 += (temp[i].x * temp[i].x + temp[i].y * temp[i].y + temp[i].z * temp[i].z + temp[i].w * temp[i].w); } norm1 = rsqrt(norm1); #pragma unroll for(int i = 0; i < 32; ++i) { temp[i].x = min(0.2f, temp[i].x * norm1); temp[i].y = min(0.2f, temp[i].y * norm1); temp[i].z = min(0.2f, temp[i].z * norm1); temp[i].w = min(0.2f, temp[i].w * norm1); norm2 += (temp[i].x * temp[i].x + temp[i].y * temp[i].y + temp[i].z * temp[i].z + temp[i].w * temp[i].w); } norm2 = rsqrt(norm2); #pragma unroll for(int i = 0; i < 32; ++i) { temp[i].x *= norm2; temp[i].y *= norm2; temp[i].z *= norm2; temp[i].w *= norm2; d_des[sidx + i] = temp[i]; } } void ProgramCU::ComputeDescriptor(CuTexImage*list, CuTexImage* got, CuTexImage* dtex, int rect, int stream) { int num = list->GetImgWidth(); int width = got->GetImgWidth(); int height = got->GetImgHeight(); dtex->InitTexture(num * 128, 1, 1); got->BindTexture2D(texDataF2); list->BindTexture(texDataF4); int block_width = DESCRIPTOR_COMPUTE_BLOCK_SIZE; dim3 grid((num * 16 + block_width -1) / block_width); dim3 block(block_width); if(rect) { if(GlobalUtil::_UseDynamicIndexing) ComputeDescriptorRECT_Kernel<true><<<grid, block>>>((float4*) dtex->_cuData, num, width, height, GlobalUtil::_DescriptorWindowFactor); else ComputeDescriptorRECT_Kernel<false><<<grid, block>>>((float4*) dtex->_cuData, num, width, height, GlobalUtil::_DescriptorWindowFactor); }else { if(GlobalUtil::_UseDynamicIndexing) ComputeDescriptor_Kernel<true><<<grid, block>>>((float4*) dtex->_cuData, num, width, height, GlobalUtil::_DescriptorWindowFactor); else ComputeDescriptor_Kernel<false><<<grid, block>>>((float4*) dtex->_cuData, num, width, height, GlobalUtil::_DescriptorWindowFactor); } if(GlobalUtil::_NormalizedSIFT) { dtex->BindTexture(texDataF4); const int block_width = DESCRIPTOR_NORMALIZ_PER_BLOCK; dim3 grid((num + block_width -1) / block_width); dim3 block(block_width); NormalizeDescriptor_Kernel<<<grid, block>>>((float4*) dtex->_cuData, num); } CheckErrorCUDA("ComputeDescriptor"); } ////////////////////////////////////////////////////// void ProgramCU::FinishCUDA() { cudaThreadSynchronize(); } int ProgramCU::CheckErrorCUDA(const char* location) { cudaError_t e = cudaGetLastError(); if(e) { if(location) fprintf(stderr, "%s:\t", location); fprintf(stderr, "%s\n", cudaGetErrorString(e)); //assert(0); return 1; }else { return 0; } } void __global__ ConvertDOG_Kernel(float* d_result, int width, int height) { int row = (blockIdx.y << BLOCK_LOG_DIM) + threadIdx.y; int col = (blockIdx.x << BLOCK_LOG_DIM) + threadIdx.x; if(col < width && row < height) { int index = row * width + col; float v = tex1Dfetch(texData, index); d_result[index] = (col == 0 || row == 0 || col == width -1 || row == height -1)? 0.5 : saturate(0.5+20.0*v); } } /// void ProgramCU::DisplayConvertDOG(CuTexImage* dog, CuTexImage* out) { if(out->_cuData == NULL) return; int width = dog->GetImgWidth(), height = dog ->GetImgHeight(); dog->BindTexture(texData); dim3 grid((width + BLOCK_DIM - 1)/ BLOCK_DIM, (height + BLOCK_DIM - 1)/BLOCK_DIM); dim3 block(BLOCK_DIM, BLOCK_DIM); ConvertDOG_Kernel<<<grid, block>>>((float*) out->_cuData, width, height); ProgramCU::CheckErrorCUDA("DisplayConvertDOG"); } void __global__ ConvertGRD_Kernel(float* d_result, int width, int height) { int row = (blockIdx.y << BLOCK_LOG_DIM) + threadIdx.y; int col = (blockIdx.x << BLOCK_LOG_DIM) + threadIdx.x; if(col < width && row < height) { int index = row * width + col; float v = tex1Dfetch(texData, index << 1); d_result[index] = (col == 0 || row == 0 || col == width -1 || row == height -1)? 0 : saturate(5 * v); } } void ProgramCU::DisplayConvertGRD(CuTexImage* got, CuTexImage* out) { if(out->_cuData == NULL) return; int width = got->GetImgWidth(), height = got ->GetImgHeight(); got->BindTexture(texData); dim3 grid((width + BLOCK_DIM - 1)/ BLOCK_DIM, (height + BLOCK_DIM - 1)/BLOCK_DIM); dim3 block(BLOCK_DIM, BLOCK_DIM); ConvertGRD_Kernel<<<grid, block>>>((float*) out->_cuData, width, height); ProgramCU::CheckErrorCUDA("DisplayConvertGRD"); } void __global__ ConvertKEY_Kernel(float4* d_result, int width, int height) { int row = (blockIdx.y << BLOCK_LOG_DIM) + threadIdx.y; int col = (blockIdx.x << BLOCK_LOG_DIM) + threadIdx.x; if(col < width && row < height) { int index = row * width + col; float4 keyv = tex1Dfetch(texDataF4, index); int is_key = (keyv.x == 1.0f || keyv.x == -1.0f); int inside = col > 0 && row > 0 && row < height -1 && col < width - 1; float v = inside? saturate(0.5 + 20 * tex1Dfetch(texData, index)) : 0.5; d_result[index] = is_key && inside ? (keyv.x > 0? make_float4(1.0f, 0, 0, 1.0f) : make_float4(0.0f, 1.0f, 0.0f, 1.0f)): make_float4(v, v, v, 1.0f) ; } } void ProgramCU::DisplayConvertKEY(CuTexImage* key, CuTexImage* dog, CuTexImage* out) { if(out->_cuData == NULL) return; int width = key->GetImgWidth(), height = key ->GetImgHeight(); dog->BindTexture(texData); key->BindTexture(texDataF4); dim3 grid((width + BLOCK_DIM - 1)/ BLOCK_DIM, (height + BLOCK_DIM - 1)/BLOCK_DIM); dim3 block(BLOCK_DIM, BLOCK_DIM); ConvertKEY_Kernel<<<grid, block>>>((float4*) out->_cuData, width, height); } void __global__ DisplayKeyPoint_Kernel(float4 * d_result, int num) { int idx = IMUL(blockIdx.x, blockDim.x) + threadIdx.x; if(idx >= num) return; float4 v = tex1Dfetch(texDataF4, idx); d_result[idx] = make_float4(v.x, v.y, 0, 1.0f); } void ProgramCU::DisplayKeyPoint(CuTexImage* ftex, CuTexImage* out) { int num = ftex->GetImgWidth(); int block_width = 64; dim3 grid((num + block_width -1) /block_width); dim3 block(block_width); ftex->BindTexture(texDataF4); DisplayKeyPoint_Kernel<<<grid, block>>>((float4*) out->_cuData, num); ProgramCU::CheckErrorCUDA("DisplayKeyPoint"); } void __global__ DisplayKeyBox_Kernel(float4* d_result, int num) { int idx = IMUL(blockIdx.x, blockDim.x) + threadIdx.x; if(idx >= num) return; int kidx = idx / 10, vidx = idx - IMUL(kidx , 10); float4 v = tex1Dfetch(texDataF4, kidx); float sz = fabs(v.z * 3.0f); /////////////////////// float s, c; __sincosf(v.w, &s, &c); /////////////////////// float dx = vidx == 0? 0 : ((vidx <= 4 || vidx >= 9)? sz : -sz); float dy = vidx <= 1? 0 : ((vidx <= 2 || vidx >= 7)? -sz : sz); float4 pos; pos.x = v.x + c * dx - s * dy; pos.y = v.y + c * dy + s * dx; pos.z = 0; pos.w = 1.0f; d_result[idx] = pos; } void ProgramCU::DisplayKeyBox(CuTexImage* ftex, CuTexImage* out) { int len = ftex->GetImgWidth(); int block_width = 32; dim3 grid((len * 10 + block_width -1) / block_width); dim3 block(block_width); ftex->BindTexture(texDataF4); DisplayKeyBox_Kernel<<<grid, block>>>((float4*) out->_cuData, len * 10); } /////////////////////////////////////////////////////////////////// inline void CuTexImage:: BindTexture(textureReference& texRef) { cudaBindTexture(NULL, &texRef, _cuData, &texRef.channelDesc, _numBytes); } inline void CuTexImage::BindTexture2D(textureReference& texRef) { #if defined(SIFTGPU_ENABLE_LINEAR_TEX2D) cudaBindTexture2D(0, &texRef, _cuData, &texRef.channelDesc, _imgWidth, _imgHeight, _imgWidth* _numChannel* sizeof(float)); #else cudaChannelFormatDesc desc; cudaGetChannelDesc(&desc, _cuData2D); cudaBindTextureToArray(&texRef, _cuData2D, &desc); #endif } int ProgramCU::CheckCudaDevice(int device) { int count = 0, device_used; if(cudaGetDeviceCount(&count) != cudaSuccess || count <= 0) { ProgramCU::CheckErrorCUDA("CheckCudaDevice"); return 0; }else if(count == 1) { cudaDeviceProp deviceProp; if ( cudaGetDeviceProperties(&deviceProp, 0) != cudaSuccess || (deviceProp.major == 9999 && deviceProp.minor == 9999)) { fprintf(stderr, "CheckCudaDevice: no device supporting CUDA.\n"); return 0; }else { GlobalUtil::_MemCapGPU = deviceProp.totalGlobalMem / 1024; GlobalUtil::_texMaxDimGL = 32768; if(GlobalUtil::_verbose) fprintf(stdout, "NOTE: changing maximum texture dimension to %d\n", GlobalUtil::_texMaxDimGL); } } if(device >0 && device < count) { cudaSetDevice(device); CheckErrorCUDA("cudaSetDevice\n"); } cudaGetDevice(&device_used); if(device != device_used) fprintf(stderr, "\nERROR: Cannot set device to %d\n" "\nWARNING: Use # %d device instead (out of %d)\n", device, device_used, count); return 1; } //////////////////////////////////////////////////////////////////////////////////////// // siftmatch funtions ////////////////////////////////////////////////////////////////////////////////////////// #define MULT_TBLOCK_DIMX 128 #define MULT_TBLOCK_DIMY 1 #define MULT_BLOCK_DIMX (MULT_TBLOCK_DIMX) #define MULT_BLOCK_DIMY (8 * MULT_TBLOCK_DIMY) texture<uint4, 1, cudaReadModeElementType> texDes1; texture<uint4, 1, cudaReadModeElementType> texDes2; void __global__ MultiplyDescriptor_Kernel(int* d_result, int num1, int num2, int3* d_temp) { int idx01 = (blockIdx.y * MULT_BLOCK_DIMY), idx02 = (blockIdx.x * MULT_BLOCK_DIMX); int idx1 = idx01 + threadIdx.y, idx2 = idx02 + threadIdx.x; __shared__ int data1[17 * 2 * MULT_BLOCK_DIMY]; int read_idx1 = idx01 * 8 + threadIdx.x, read_idx2 = idx2 * 8; int col4 = threadIdx.x & 0x3, row4 = threadIdx.x >> 2; int cache_idx1 = IMUL(row4, 17) + (col4 << 2); /////////////////////////////////////////////////////////////// //Load feature descriptors /////////////////////////////////////////////////////////////// #if MULT_BLOCK_DIMY == 16 uint4 v = tex1Dfetch(texDes1, read_idx1); data1[cache_idx1] = v.x; data1[cache_idx1+1] = v.y; data1[cache_idx1+2] = v.z; data1[cache_idx1+3] = v.w; #elif MULT_BLOCK_DIMY == 8 if(threadIdx.x < 64) { uint4 v = tex1Dfetch(texDes1, read_idx1); data1[cache_idx1] = v.x; data1[cache_idx1+1] = v.y; data1[cache_idx1+2] = v.z; data1[cache_idx1+3] = v.w; } #else #error #endif __syncthreads(); /// if(idx2 >= num2) return; /////////////////////////////////////////////////////////////////////////// //compare descriptors int results[MULT_BLOCK_DIMY]; #pragma unroll for(int i = 0; i < MULT_BLOCK_DIMY; ++i) results[i] = 0; #pragma unroll for(int i = 0; i < 8; ++i) { uint4 v = tex1Dfetch(texDes2, read_idx2 + i); unsigned char* p2 = (unsigned char*)(&v); #pragma unroll for(int k = 0; k < MULT_BLOCK_DIMY; ++k) { unsigned char* p1 = (unsigned char*) (data1 + k * 34 + i * 4 + (i/4)); results[k] += ( IMUL(p1[0], p2[0]) + IMUL(p1[1], p2[1]) + IMUL(p1[2], p2[2]) + IMUL(p1[3], p2[3]) + IMUL(p1[4], p2[4]) + IMUL(p1[5], p2[5]) + IMUL(p1[6], p2[6]) + IMUL(p1[7], p2[7]) + IMUL(p1[8], p2[8]) + IMUL(p1[9], p2[9]) + IMUL(p1[10], p2[10]) + IMUL(p1[11], p2[11]) + IMUL(p1[12], p2[12]) + IMUL(p1[13], p2[13]) + IMUL(p1[14], p2[14]) + IMUL(p1[15], p2[15])); } } int dst_idx = IMUL(idx1, num2) + idx2; if(d_temp) { int3 cmp_result = make_int3(0, -1, 0); #pragma unroll for(int i = 0; i < MULT_BLOCK_DIMY; ++i) { if(idx1 + i < num1) { cmp_result = results[i] > cmp_result.x? make_int3(results[i], idx1 + i, cmp_result.x) : make_int3(cmp_result.x, cmp_result.y, max(cmp_result.z, results[i])); d_result[dst_idx + IMUL(i, num2)] = results[i]; } } d_temp[ IMUL(blockIdx.y, num2) + idx2] = cmp_result; }else { #pragma unroll for(int i = 0; i < MULT_BLOCK_DIMY; ++i) { if(idx1 + i < num1) d_result[dst_idx + IMUL(i, num2)] = results[i]; } } } void ProgramCU::MultiplyDescriptor(CuTexImage* des1, CuTexImage* des2, CuTexImage* texDot, CuTexImage* texCRT) { int num1 = des1->GetImgWidth() / 8; int num2 = des2->GetImgWidth() / 8; dim3 grid( (num2 + MULT_BLOCK_DIMX - 1)/ MULT_BLOCK_DIMX, (num1 + MULT_BLOCK_DIMY - 1)/MULT_BLOCK_DIMY); dim3 block(MULT_TBLOCK_DIMX, MULT_TBLOCK_DIMY); texDot->InitTexture( num2,num1); if(texCRT) texCRT->InitTexture(num2, (num1 + MULT_BLOCK_DIMY - 1)/MULT_BLOCK_DIMY, 32); des1->BindTexture(texDes1); des2->BindTexture(texDes2); MultiplyDescriptor_Kernel<<<grid, block>>>((int*)texDot->_cuData, num1, num2, (texCRT? (int3*)texCRT->_cuData : NULL)); } texture<float, 1, cudaReadModeElementType> texLoc1; texture<float2, 1, cudaReadModeElementType> texLoc2; struct Matrix33{float mat[3][3];}; void __global__ MultiplyDescriptorG_Kernel(int* d_result, int num1, int num2, int3* d_temp, Matrix33 H, float hdistmax, Matrix33 F, float fdistmax) { int idx01 = (blockIdx.y * MULT_BLOCK_DIMY); int idx02 = (blockIdx.x * MULT_BLOCK_DIMX); int idx1 = idx01 + threadIdx.y; int idx2 = idx02 + threadIdx.x; __shared__ int data1[17 * 2 * MULT_BLOCK_DIMY]; __shared__ float loc1[MULT_BLOCK_DIMY * 2]; int read_idx1 = idx01 * 8 + threadIdx.x ; int read_idx2 = idx2 * 8; int col4 = threadIdx.x & 0x3, row4 = threadIdx.x >> 2; int cache_idx1 = IMUL(row4, 17) + (col4 << 2); #if MULT_BLOCK_DIMY == 16 uint4 v = tex1Dfetch(texDes1, read_idx1); data1[cache_idx1] = v.x; data1[cache_idx1+1] = v.y; data1[cache_idx1+2] = v.z; data1[cache_idx1+3] = v.w; #elif MULT_BLOCK_DIMY == 8 if(threadIdx.x < 64) { uint4 v = tex1Dfetch(texDes1, read_idx1); data1[cache_idx1] = v.x; data1[cache_idx1+1] = v.y; data1[cache_idx1+2] = v.z; data1[cache_idx1+3] = v.w; } #else #error #endif __syncthreads(); if(threadIdx.x < MULT_BLOCK_DIMY * 2) { loc1[threadIdx.x] = tex1Dfetch(texLoc1, 2 * idx01 + threadIdx.x); } __syncthreads(); if(idx2 >= num2) return; int results[MULT_BLOCK_DIMY]; ///////////////////////////////////////////////////////////////////////////////////////////// //geometric verification ///////////////////////////////////////////////////////////////////////////////////////////// int good_count = 0; float2 loc2 = tex1Dfetch(texLoc2, idx2); #pragma unroll for(int i = 0; i < MULT_BLOCK_DIMY; ++i) { if(idx1 + i < num1) { float* loci = loc1 + i * 2; float locx = loci[0], locy = loci[1]; //homography float x[3], diff[2]; x[0] = H.mat[0][0] * locx + H.mat[0][1] * locy + H.mat[0][2]; x[1] = H.mat[1][0] * locx + H.mat[1][1] * locy + H.mat[1][2]; x[2] = H.mat[2][0] * locx + H.mat[2][1] * locy + H.mat[2][2]; diff[0] = FDIV(x[0], x[2]) - loc2.x; diff[1] = FDIV(x[1], x[2]) - loc2.y; float hdist = diff[0] * diff[0] + diff[1] * diff[1]; if(hdist < hdistmax) { //check fundamental matrix float fx1[3], ftx2[3], x2fx1, se; fx1[0] = F.mat[0][0] * locx + F.mat[0][1] * locy + F.mat[0][2]; fx1[1] = F.mat[1][0] * locx + F.mat[1][1] * locy + F.mat[1][2]; fx1[2] = F.mat[2][0] * locx + F.mat[2][1] * locy + F.mat[2][2]; ftx2[0] = F.mat[0][0] * loc2.x + F.mat[1][0] * loc2.y + F.mat[2][0]; ftx2[1] = F.mat[0][1] * loc2.x + F.mat[1][1] * loc2.y + F.mat[2][1]; //ftx2[2] = F.mat[0][2] * loc2.x + F.mat[1][2] * loc2.y + F.mat[2][2]; x2fx1 = loc2.x * fx1[0] + loc2.y * fx1[1] + fx1[2]; se = FDIV(x2fx1 * x2fx1, fx1[0] * fx1[0] + fx1[1] * fx1[1] + ftx2[0] * ftx2[0] + ftx2[1] * ftx2[1]); results[i] = se < fdistmax? 0: -262144; }else { results[i] = -262144; } }else { results[i] = -262144; } good_count += (results[i] >=0); } ///////////////////////////////////////////////////////////////////////////////////////////// ///compare feature descriptors anyway ///////////////////////////////////////////////////////////////////////////////////////////// if(good_count > 0) { #pragma unroll for(int i = 0; i < 8; ++i) { uint4 v = tex1Dfetch(texDes2, read_idx2 + i); unsigned char* p2 = (unsigned char*)(&v); #pragma unroll for(int k = 0; k < MULT_BLOCK_DIMY; ++k) { unsigned char* p1 = (unsigned char*) (data1 + k * 34 + i * 4 + (i/4)); results[k] += ( IMUL(p1[0], p2[0]) + IMUL(p1[1], p2[1]) + IMUL(p1[2], p2[2]) + IMUL(p1[3], p2[3]) + IMUL(p1[4], p2[4]) + IMUL(p1[5], p2[5]) + IMUL(p1[6], p2[6]) + IMUL(p1[7], p2[7]) + IMUL(p1[8], p2[8]) + IMUL(p1[9], p2[9]) + IMUL(p1[10], p2[10]) + IMUL(p1[11], p2[11]) + IMUL(p1[12], p2[12]) + IMUL(p1[13], p2[13]) + IMUL(p1[14], p2[14]) + IMUL(p1[15], p2[15])); } } } int dst_idx = IMUL(idx1, num2) + idx2; if(d_temp) { int3 cmp_result = make_int3(0, -1, 0); #pragma unroll for(int i= 0; i < MULT_BLOCK_DIMY; ++i) { if(idx1 + i < num1) { cmp_result = results[i] > cmp_result.x? make_int3(results[i], idx1 + i, cmp_result.x) : make_int3(cmp_result.x, cmp_result.y, max(cmp_result.z, results[i])); d_result[dst_idx + IMUL(i, num2)] = max(results[i], 0); }else { break; } } d_temp[ IMUL(blockIdx.y, num2) + idx2] = cmp_result; }else { #pragma unroll for(int i = 0; i < MULT_BLOCK_DIMY; ++i) { if(idx1 + i < num1) d_result[dst_idx + IMUL(i, num2)] = max(results[i], 0); else break; } } } void ProgramCU::MultiplyDescriptorG(CuTexImage* des1, CuTexImage* des2, CuTexImage* loc1, CuTexImage* loc2, CuTexImage* texDot, CuTexImage* texCRT, float* H, float hdistmax, float* F, float fdistmax) { int num1 = des1->GetImgWidth() / 8; int num2 = des2->GetImgWidth() / 8; Matrix33 MatF, MatH; //copy the matrix memcpy(MatF.mat, F, 9 * sizeof(float)); memcpy(MatH.mat, H, 9 * sizeof(float)); //thread blocks dim3 grid( (num2 + MULT_BLOCK_DIMX - 1)/ MULT_BLOCK_DIMX, (num1 + MULT_BLOCK_DIMY - 1)/MULT_BLOCK_DIMY); dim3 block(MULT_TBLOCK_DIMX, MULT_TBLOCK_DIMY); //intermediate results texDot->InitTexture( num2,num1); if(texCRT) texCRT->InitTexture( num2, (num1 + MULT_BLOCK_DIMY - 1)/MULT_BLOCK_DIMY, 3); loc1->BindTexture(texLoc1); loc2->BindTexture(texLoc2); des1->BindTexture(texDes1); des2->BindTexture(texDes2); MultiplyDescriptorG_Kernel<<<grid, block>>>((int*)texDot->_cuData, num1, num2, (texCRT? (int3*)texCRT->_cuData : NULL), MatH, hdistmax, MatF, fdistmax); } texture<int, 1, cudaReadModeElementType> texDOT; #define ROWMATCH_BLOCK_WIDTH 32 #define ROWMATCH_BLOCK_HEIGHT 1 void __global__ RowMatch_Kernel(int*d_dot, int* d_result, int num2, float distmax, float ratiomax) { #if ROWMATCH_BLOCK_HEIGHT == 1 __shared__ int dotmax[ROWMATCH_BLOCK_WIDTH]; __shared__ int dotnxt[ROWMATCH_BLOCK_WIDTH]; __shared__ int dotidx[ROWMATCH_BLOCK_WIDTH]; int row = blockIdx.y; #else __shared__ int x_dotmax[ROWMATCH_BLOCK_HEIGHT][ROWMATCH_BLOCK_WIDTH]; __shared__ int x_dotnxt[ROWMATCH_BLOCK_HEIGHT][ROWMATCH_BLOCK_WIDTH]; __shared__ int x_dotidx[ROWMATCH_BLOCK_HEIGHT][ROWMATCH_BLOCK_WIDTH]; int* dotmax = x_dotmax[threadIdx.y]; int* dotnxt = x_dotnxt[threadIdx.y]; int* dotidx = x_dotidx[threadIdx.y]; int row = IMUL(blockIdx.y, ROWMATCH_BLOCK_HEIGHT) + threadIdx.y; #endif int base_address = IMUL(row , num2); int t_dotmax = 0, t_dotnxt = 0, t_dotidx = -1; for(int i = 0; i < num2; i += ROWMATCH_BLOCK_WIDTH) { if(threadIdx.x + i < num2) { int v = d_dot[base_address + threadIdx.x + i]; // tex1Dfetch(texDOT, base_address + threadIdx.x + i); bool test = v > t_dotmax; t_dotnxt = test? t_dotmax : max(t_dotnxt, v); t_dotidx = test? (threadIdx.x + i) : t_dotidx; t_dotmax = test? v: t_dotmax; } __syncthreads(); } dotmax[threadIdx.x] = t_dotmax; dotnxt[threadIdx.x] = t_dotnxt; dotidx[threadIdx.x] = t_dotidx; __syncthreads(); #pragma unroll for(int step = ROWMATCH_BLOCK_WIDTH/2; step >0; step /= 2) { if(threadIdx.x < step) { int v1 = dotmax[threadIdx.x], v2 = dotmax[threadIdx.x + step]; bool test = v2 > v1; dotnxt[threadIdx.x] = test? max(v1, dotnxt[threadIdx.x + step]) :max(dotnxt[threadIdx.x], v2); dotidx[threadIdx.x] = test? dotidx[threadIdx.x + step] : dotidx[threadIdx.x]; dotmax[threadIdx.x] = test? v2 : v1; } __syncthreads(); } if(threadIdx.x == 0) { float dist = acos(min(dotmax[0] * 0.000003814697265625f, 1.0)); float distn = acos(min(dotnxt[0] * 0.000003814697265625f, 1.0)); //float ratio = dist / distn; d_result[row] = (dist < distmax) && (dist < distn * ratiomax) ? dotidx[0] : -1;//? : -1; } } void ProgramCU::GetRowMatch(CuTexImage* texDot, CuTexImage* texMatch, float distmax, float ratiomax) { int num1 = texDot->GetImgHeight(); int num2 = texDot->GetImgWidth(); dim3 grid(1, num1/ROWMATCH_BLOCK_HEIGHT); dim3 block(ROWMATCH_BLOCK_WIDTH, ROWMATCH_BLOCK_HEIGHT); // texDot->BindTexture(texDOT); RowMatch_Kernel<<<grid, block>>>((int*)texDot->_cuData, (int*)texMatch->_cuData, num2, distmax, ratiomax); } #define COLMATCH_BLOCK_WIDTH 32 //texture<int3, 1, cudaReadModeElementType> texCT; void __global__ ColMatch_Kernel(int3*d_crt, int* d_result, int height, int num2, float distmax, float ratiomax) { int col = COLMATCH_BLOCK_WIDTH * blockIdx.x + threadIdx.x; if(col >= num2) return; int3 result = d_crt[col];//tex1Dfetch(texCT, col); int read_idx = col + num2; for(int i = 1; i < height; ++i, read_idx += num2) { int3 temp = d_crt[read_idx];//tex1Dfetch(texCT, read_idx); result = result.x < temp.x? make_int3(temp.x, temp.y, max(result.x, temp.z)) : make_int3(result.x, result.y, max(result.z, temp.x)); } float dist = acos(min(result.x * 0.000003814697265625f, 1.0)); float distn = acos(min(result.z * 0.000003814697265625f, 1.0)); //float ratio = dist / distn; d_result[col] = (dist < distmax) && (dist < distn * ratiomax) ? result.y : -1;//? : -1; } void ProgramCU::GetColMatch(CuTexImage* texCRT, CuTexImage* texMatch, float distmax, float ratiomax) { int height = texCRT->GetImgHeight(); int num2 = texCRT->GetImgWidth(); //texCRT->BindTexture(texCT); dim3 grid((num2 + COLMATCH_BLOCK_WIDTH -1) / COLMATCH_BLOCK_WIDTH); dim3 block(COLMATCH_BLOCK_WIDTH); ColMatch_Kernel<<<grid, block>>>((int3*)texCRT->_cuData, (int*) texMatch->_cuData, height, num2, distmax, ratiomax); } #endif