# coding: utf-8 ''' File: utils.py Project: AlphaPose File Created: Thursday, 1st March 2018 5:32:34 pm Author: Yuliang Xiu (yuliangxiu@sjtu.edu.cn) ----- Last Modified: Thursday, 20th March 2018 1:18:17 am Modified By: Yuliang Xiu (yuliangxiu@sjtu.edu.cn>) ----- Copyright 2018 - 2018 Shanghai Jiao Tong University, Machine Vision and Intelligence Group ''' import numpy as np import cv2 as cv import os import json import copy import heapq from munkres import Munkres, print_matrix from PIL import Image from tqdm import tqdm # keypoint penalty weight delta = 2*np.array([0.01388152, 0.01515228, 0.01057665, 0.01417709, 0.01497891, 0.01402144, \ 0.03909642, 0.03686941, 0.01981803, 0.03843971, 0.03412318, 0.02415081, \ 0.01291456, 0.01236173,0.01291456, 0.01236173]) # get expand bbox surrounding single person's keypoints def get_box(pose, imgpath): pose = np.array(pose).reshape(-1,3) xmin = np.min(pose[:,0]) xmax = np.max(pose[:,0]) ymin = np.min(pose[:,1]) ymax = np.max(pose[:,1]) img_height, img_width, _ = cv.imread(imgpath).shape return expand_bbox(xmin, xmax, ymin, ymax, img_width, img_height) # expand bbox for containing more background def expand_bbox(left, right, top, bottom, img_width, img_height): width = right - left height = bottom - top ratio = 0.1 # expand ratio new_left = np.clip(left - ratio * width, 0, img_width) new_right = np.clip(right + ratio * width, 0, img_width) new_top = np.clip(top - ratio * height, 0, img_height) new_bottom = np.clip(bottom + ratio * height, 0, img_height) return [int(new_left), int(new_right), int(new_top), int(new_bottom)] # calculate final matching grade def cal_grade(l, w): return sum(np.array(l)*np.array(w)) # calculate IoU of two boxes(thanks @ZongweiZhou1) def cal_bbox_iou(boxA, boxB): xA = max(boxA[0], boxB[0]) #xmin yA = max(boxA[2], boxB[2]) #ymin xB = min(boxA[1], boxB[1]) #xmax yB = min(boxA[3], boxB[3]) #ymax if xA < xB and yA < yB: interArea = (xB - xA + 1) * (yB - yA + 1) boxAArea = (boxA[1] - boxA[0] + 1) * (boxA[3] - boxA[2] + 1) boxBArea = (boxB[1] - boxB[0] + 1) * (boxB[3] - boxB[2] + 1) iou = interArea / float(boxAArea + boxBArea - interArea+0.00001) else: iou=0.0 return iou # calculate OKS between two single poses def compute_oks(anno, predict, delta): xmax = np.max(np.vstack((anno[:, 0], predict[:, 0]))) xmin = np.min(np.vstack((anno[:, 0], predict[:, 0]))) ymax = np.max(np.vstack((anno[:, 1], predict[:, 1]))) ymin = np.min(np.vstack((anno[:, 1], predict[:, 1]))) scale = (xmax - xmin) * (ymax - ymin) dis = np.sum((anno - predict)**2, axis=1) oks = np.mean(np.exp(-dis / 2 / delta**2 / scale)) return oks # stack all already tracked people's info together(thanks @ZongweiZhou1) def stack_all_pids(track_vid, frame_list, idxs, max_pid_id, link_len): #track_vid contains track_vid[<=idx] all_pids_info = [] all_pids_fff = [] # boolean list, 'fff' means From Former Frame all_pids_ids = [(item+1) for item in range(max_pid_id)] for idx in np.arange(idxs,max(idxs-link_len,-1),-1): for pid in range(1, track_vid[frame_list[idx]]['num_boxes']+1): if len(all_pids_ids) == 0: return all_pids_info, all_pids_fff elif track_vid[frame_list[idx]][pid]['new_pid'] in all_pids_ids: all_pids_ids.remove(track_vid[frame_list[idx]][pid]['new_pid']) all_pids_info.append(track_vid[frame_list[idx]][pid]) if idx == idxs: all_pids_fff.append(True) else: all_pids_fff.append(False) return all_pids_info, all_pids_fff # calculate DeepMatching Pose IoU given two boxes def find_two_pose_box_iou(pose1_box, pose2_box, all_cors): x1, y1, x2, y2 = [all_cors[:, col] for col in range(4)] x_min, x_max, y_min, y_max = pose1_box x1_region_ids = set(np.where((x1 >= x_min) & (x1 <= x_max))[0].tolist()) y1_region_ids = set(np.where((y1 >= y_min) & (y1 <= y_max))[0].tolist()) region_ids1 = x1_region_ids & y1_region_ids x_min, x_max, y_min, y_max = pose2_box x2_region_ids = set(np.where((x2 >= x_min) & (x2 <= x_max))[0].tolist()) y2_region_ids = set(np.where((y2 >= y_min) & (y2 <= y_max))[0].tolist()) region_ids2 = x2_region_ids & y2_region_ids inter = region_ids1 & region_ids2 union = region_ids1 | region_ids2 pose_box_iou = len(inter) / (len(union) + 0.00001) return pose_box_iou # calculate general Pose IoU(only consider top NUM matched keypoints) def cal_pose_iou(pose1_box,pose2_box, num,mag): pose_iou = [] for row in range(len(pose1_box)): x1,y1 = pose1_box[row] x2,y2 = pose2_box[row] box1 = [x1-mag,x1+mag,y1-mag,y1+mag] box2 = [x2-mag,x2+mag,y2-mag,y2+mag] pose_iou.append(cal_bbox_iou(box1,box2)) return np.mean(heapq.nlargest(num, pose_iou)) # calculate DeepMatching based Pose IoU(only consider top NUM matched keypoints) def cal_pose_iou_dm(all_cors,pose1,pose2,num,mag): poses_iou = [] for ids in range(len(pose1)): pose1_box = [pose1[ids][0]-mag,pose1[ids][0]+mag,pose1[ids][1]-mag,pose1[ids][1]+mag] pose2_box = [pose2[ids][0]-mag,pose2[ids][0]+mag,pose2[ids][1]-mag,pose2[ids][1]+mag] poses_iou.append(find_two_pose_box_iou(pose1_box, pose2_box, all_cors)) return np.mean(heapq.nlargest(num, poses_iou)) # hungarian matching algorithm(thanks @ZongweiZhou1) def best_matching_hungarian(all_cors, all_pids_info, all_pids_fff, track_vid_next_fid, weights, weights_fff, num, mag): x1, y1, x2, y2 = [all_cors[:, col] for col in range(4)] all_grades_details = [] all_grades = [] box1_num = len(all_pids_info) box2_num = track_vid_next_fid['num_boxes'] cost_matrix = np.zeros((box1_num, box2_num)) for pid1 in range(box1_num): box1_pos = all_pids_info[pid1]['box_pos'] box1_region_ids = find_region_cors_last(box1_pos, all_cors) box1_score = all_pids_info[pid1]['box_score'] box1_pose = all_pids_info[pid1]['box_pose_pos'] box1_fff = all_pids_fff[pid1] for pid2 in range(1, track_vid_next_fid['num_boxes'] + 1): box2_pos = track_vid_next_fid[pid2]['box_pos'] box2_region_ids = find_region_cors_next(box2_pos, all_cors) box2_score = track_vid_next_fid[pid2]['box_score'] box2_pose = track_vid_next_fid[pid2]['box_pose_pos'] inter = box1_region_ids & box2_region_ids union = box1_region_ids | box2_region_ids dm_iou = len(inter) / (len(union) + 0.00001) box_iou = cal_bbox_iou(box1_pos, box2_pos) pose_iou_dm = cal_pose_iou_dm(all_cors, box1_pose, box2_pose, num,mag) pose_iou = cal_pose_iou(box1_pose, box2_pose,num,mag) if box1_fff: grade = cal_grade([dm_iou, box_iou, pose_iou_dm, pose_iou, box1_score, box2_score], weights) else: grade = cal_grade([dm_iou, box_iou, pose_iou_dm, pose_iou, box1_score, box2_score], weights_fff) cost_matrix[pid1, pid2 - 1] = grade m = Munkres() indexes = m.compute((-np.array(cost_matrix)).tolist()) return indexes, cost_matrix # calculate number of matching points in one box from last frame def find_region_cors_last(box_pos, all_cors): x1, y1, x2, y2 = [all_cors[:, col] for col in range(4)] x_min, x_max, y_min, y_max = box_pos x1_region_ids = set(np.where((x1 >= x_min) & (x1 <= x_max))[0].tolist()) y1_region_ids = set(np.where((y1 >= y_min) & (y1 <= y_max))[0].tolist()) region_ids = x1_region_ids & y1_region_ids return region_ids # calculate number of matching points in one box from next frame def find_region_cors_next(box_pos, all_cors): x1, y1, x2, y2 = [all_cors[:, col] for col in range(4)] x_min, x_max, y_min, y_max = box_pos x2_region_ids = set(np.where((x2 >= x_min) & (x2 <= x_max))[0].tolist()) y2_region_ids = set(np.where((y2 >= y_min) & (y2 <= y_max))[0].tolist()) region_ids = x2_region_ids & y2_region_ids return region_ids # fill the nose keypoint by averaging head and neck def add_nose(array): if min(array.shape) == 2: head = array[-1,:] neck = array[-2,:] else: head = array[-1] neck = array[-2] nose = (head+neck)/2.0 return np.insert(array,-1,nose,axis=0) # list remove operation def remove_list(l1,vname,l2): for item in l2: l1.remove(os.path.join(vname,item)) return l1