/* Copyright (c) 2006, Michael Kazhdan and Matthew Bolitho All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the Johns Hopkins University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "Factor.h" //////////////////////// // StartingPolynomial // //////////////////////// template template StartingPolynomial StartingPolynomial::operator * (const StartingPolynomial& p) const{ StartingPolynomial sp; if(start>p.start){sp.start=start;} else{sp.start=p.start;} sp.p=this->p*p.p; return sp; } template StartingPolynomial StartingPolynomial::scale( double s ) const { StartingPolynomial q; q.start = start*s; q.p = p.scale(s); return q; } template StartingPolynomial StartingPolynomial::shift(double s) const{ StartingPolynomial q; q.start=start+s; q.p=p.shift(s); return q; } template int StartingPolynomial::operator < (const StartingPolynomial& sp) const{ if(start int StartingPolynomial::Compare(const void* v1,const void* v2){ double d=((StartingPolynomial*)(v1))->start-((StartingPolynomial*)(v2))->start; if ( d<0 ) return -1; else if( d>0 ) return 1; else return 0; } ///////////////// // PPolynomial // ///////////////// template< int Degree > PPolynomial< Degree >::PPolynomial( void ) { polyCount = 0; polys = NullPointer( StartingPolynomial< Degree > ); } template< int Degree > PPolynomial::PPolynomial( const PPolynomial& p ) { polyCount = 0; polys = NullPointer( StartingPolynomial< Degree > ); set( p.polyCount ); memcpy( polys , p.polys , sizeof( StartingPolynomial ) * p.polyCount ); } template< int Degree > PPolynomial< Degree >::~PPolynomial( void ) { FreePointer( polys ); polyCount = 0; } template< int Degree > void PPolynomial< Degree >::set( Pointer( StartingPolynomial< Degree > ) sps , int count ) { int c=0; set( count ); qsort( sps , count , sizeof( StartingPolynomial< Degree > ) , StartingPolynomial< Degree >::Compare ); for( int i=0 ; i int PPolynomial< Degree >::size( void ) const{ return int(sizeof(StartingPolynomial)*polyCount); } template< int Degree > void PPolynomial::set( size_t size ) { FreePointer( polys ); polyCount = size; if( size ) { polys = AllocPointer< StartingPolynomial< Degree > >( size ); memset( polys , 0 , sizeof( StartingPolynomial< Degree > )*size ); } } template< int Degree > void PPolynomial::reset( size_t newSize ) { polyCount = newSize; polys = ReAllocPointer< StartingPolynomial< Degree > >( polys , newSize ); } template< int Degree > PPolynomial< Degree >& PPolynomial< Degree >::compress( double delta ) { int _polyCount = polyCount; Pointer( StartingPolynomial< Degree > ) _polys = polys; polyCount = 1 , polys = NullPointer( StartingPolynomial< Degree > ); for( int i=1 ; i<_polyCount ; i++ ) if( _polys[i].start-_polys[i-1].start>delta ) polyCount++; if( polyCount==_polyCount ) polys = _polys; else { polys = AllocPointer< StartingPolynomial< Degree > >( polyCount ); polys[0] = _polys[0] , polyCount = 0; for( int i=1 ; i<_polyCount ; i++ ) { if( _polys[i].start-_polys[i-1].start>delta ) polys[ ++polyCount ] = _polys[i]; else polys[ polyCount ].p += _polys[i].p; } polyCount++; FreePointer( _polys ); } return *this; } template< int Degree > PPolynomial& PPolynomial::operator = (const PPolynomial& p){ set(p.polyCount); memcpy(polys,p.polys,sizeof(StartingPolynomial)*p.polyCount); return *this; } template template PPolynomial& PPolynomial::operator = (const PPolynomial& p){ set(p.polyCount); for(int i=0;i double PPolynomial::operator ()( double t ) const { double v=0; for( int i=0 ; ipolys[i].start ; i++ ) v+=polys[i].p(t); return v; } template double PPolynomial::integral( double tMin , double tMax ) const { int m=1; double start,end,s,v=0; start=tMin; end=tMax; if(tMin>tMax){ m=-1; start=tMax; end=tMin; } for(int i=0;i double PPolynomial::Integral(void) const{return integral(polys[0].start,polys[polyCount-1].start);} template PPolynomial PPolynomial::operator + (const PPolynomial& p) const{ PPolynomial q; int i,j; size_t idx=0; q.set(polyCount+p.polyCount); i=j=-1; while(idx=int(p.polyCount)-1) {q.polys[idx]= polys[++i];} else if (i>=int( polyCount)-1) {q.polys[idx]=p.polys[++j];} else if(polys[i+1].start PPolynomial PPolynomial::operator - (const PPolynomial& p) const{ PPolynomial q; int i,j; size_t idx=0; q.set(polyCount+p.polyCount); i=j=-1; while(idx=int(p.polyCount)-1) {q.polys[idx]= polys[++i];} else if (i>=int( polyCount)-1) {q.polys[idx].start=p.polys[++j].start;q.polys[idx].p=p.polys[j].p*(-1.0);} else if(polys[i+1].start PPolynomial& PPolynomial::addScaled(const PPolynomial& p,double scale){ int i,j; StartingPolynomial* oldPolys=polys; size_t idx=0,cnt=0,oldPolyCount=polyCount; polyCount=0; polys=NULL; set(oldPolyCount+p.polyCount); i=j=-1; while(cnt=int( p.polyCount)-1) {polys[idx]=oldPolys[++i];} else if (i>=int(oldPolyCount)-1) {polys[idx].start= p.polys[++j].start;polys[idx].p=p.polys[j].p*scale;} else if (oldPolys[i+1].start template PPolynomial PPolynomial::operator * (const PPolynomial& p) const{ PPolynomial q; StartingPolynomial *sp; int i,j,spCount=int(polyCount*p.polyCount); sp=(StartingPolynomial*)malloc(sizeof(StartingPolynomial)*spCount); for(i=0;i template PPolynomial PPolynomial::operator * (const Polynomial& p) const{ PPolynomial q; q.set(polyCount); for(int i=0;i PPolynomial PPolynomial::scale( double s ) const { PPolynomial q; q.set( polyCount ); for( size_t i=0 ; i ) , StartingPolynomial< Degree >::Compare ); return q; } template< int Degree > PPolynomial< Degree > PPolynomial< Degree >::reflect( double r ) const { PPolynomial q; q.set( polyCount ); for( size_t i=0 ; i ) , StartingPolynomial< Degree >::Compare ); return q; } template PPolynomial PPolynomial::shift( double s ) const { PPolynomial q; q.set(polyCount); for(size_t i=0;i PPolynomial PPolynomial::derivative(void) const{ PPolynomial q; q.set(polyCount); for(size_t i=0;i PPolynomial PPolynomial::integral(void) const{ int i; PPolynomial q; q.set(polyCount); for(i=0;i PPolynomial& PPolynomial::operator += ( double s ) {polys[0].p+=s;} template PPolynomial& PPolynomial::operator -= ( double s ) {polys[0].p-=s;} template PPolynomial& PPolynomial::operator *= ( double s ) { for(int i=0;i PPolynomial& PPolynomial::operator /= ( double s ) { for(size_t i=0;i PPolynomial PPolynomial::operator + ( double s ) const { PPolynomial q=*this; q+=s; return q; } template PPolynomial PPolynomial::operator - ( double s ) const { PPolynomial q=*this; q-=s; return q; } template PPolynomial PPolynomial::operator * ( double s ) const { PPolynomial q=*this; q*=s; return q; } template PPolynomial PPolynomial::operator / ( double s ) const { PPolynomial q=*this; q/=s; return q; } template void PPolynomial::printnl(void) const{ Polynomial p; if(!polyCount){ Polynomial p; printf("[-Infinity,Infinity]\n"); } else{ for(size_t i=0;i PPolynomial< 0 > PPolynomial< 0 >::BSpline( double radius ) { PPolynomial q; q.set(2); q.polys[0].start=-radius; q.polys[1].start= radius; q.polys[0].p.coefficients[0]= 1.0; q.polys[1].p.coefficients[0]=-1.0; return q; } template< int Degree > PPolynomial< Degree > PPolynomial::BSpline( double radius ) { return PPolynomial< Degree-1 >::BSpline().MovingAverage( radius ); } template PPolynomial PPolynomial::MovingAverage( double radius ) const { PPolynomial A; Polynomial p; Pointer( StartingPolynomial< Degree+1 > ) sps; sps = AllocPointer< StartingPolynomial< Degree+1 > >( polyCount*2 ); for(int i=0;i void PPolynomial::getSolutions(double c,std::vector& roots,double EPS,double min,double max) const{ Polynomial p; std::vector tempRoots; p.setZero(); for(size_t i=0;imax){break;} if(ipolys[i].start && (i+1==polyCount || tempRoots[j]<=polys[i+1].start)){ if(tempRoots[j]>min && tempRoots[j] void PPolynomial::write(FILE* fp,int samples,double min,double max) const{ fwrite(&samples,sizeof(int),1,fp); for(int i=0;i