/* Copyright (c) 2013, Michael Kazhdan All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the Johns Hopkins University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #ifdef _OPENMP #include #endif // _OPENMP #include #include "CmdLineParser.h" #include "Geometry.h" #include "Ply.h" #include "MAT.h" #include "MyTime.h" cmdLineString In( "in" ) , Out( "out" ); cmdLineInt Smooth( "smooth" , 5 ); cmdLineFloat Trim( "trim" ) , IslandAreaRatio( "aRatio" , 0.001f ); cmdLineReadable PolygonMesh( "polygonMesh" ); cmdLineReadable* params[] = { &In , &Out , &Trim , &PolygonMesh , &Smooth , &IslandAreaRatio }; void ShowUsage( char* ex ) { printf( "Usage: %s\n" , ex ); printf( "\t --%s \n" , In.name ); printf( "\t[--%s ]\n" , Out.name ); printf( "\t[--%s =%d]\n" , Smooth.name , Smooth.value ); printf( "\t[--%s ]\n" , Trim.name ); printf( "\t[--%s =%f]\n" , IslandAreaRatio.name , IslandAreaRatio.value ); printf( "\t[--%s]\n" , PolygonMesh.name ); } long long EdgeKey( int key1 , int key2 ) { if( key1 Vertex InterpolateVertices( const Vertex& v1 , const Vertex& v2 , Real value ) { typename Vertex::Wrapper _v1(v1) , _v2(v2); if( _v1.value==_v2.value ) return Vertex( (_v1+_v2)/Real(2.) ); Real dx = ( _v1.value-value ) / ( _v1.value-_v2.value ); return Vertex( _v1*(1.f-dx) + _v2*dx ); } template< class Real , class Vertex > void SmoothValues( std::vector< Vertex >& vertices , const std::vector< std::vector< int > >& polygons ) { std::vector< int > count( vertices.size() ); std::vector< Real > sums( vertices.size() , 0 ); for( size_t i=0 ; i void SplitPolygon ( const std::vector< int >& polygon , std::vector< Vertex >& vertices , std::vector< std::vector< int > >* ltPolygons , std::vector< std::vector< int > >* gtPolygons , std::vector< bool >* ltFlags , std::vector< bool >* gtFlags , hash_map< long long , int >& vertexTable , Real trimValue ) { int sz = int( polygon.size() ); std::vector< bool > gt( sz ); int gtCount = 0; for( int j=0 ; jtrimValue ); if( gt[j] ) gtCount++; } if ( gtCount==sz ){ if( gtPolygons ) gtPolygons->push_back( polygon ) ; if( gtFlags ) gtFlags->push_back( false ); } else if( gtCount==0 ){ if( ltPolygons ) ltPolygons->push_back( polygon ) ; if( ltFlags ) ltFlags->push_back( false ); } else { int start; for( start=0 ; start poly; // Add the initial vertex { int j1 = (start+int(sz)-1)%sz , j2 = start; int v1 = polygon[j1] , v2 = polygon[j2]; int vIdx; hash_map< long long , int >::iterator iter = vertexTable.find( EdgeKey( v1 , v2 ) ); if( iter==vertexTable.end() ) { vertexTable[ EdgeKey( v1 , v2 ) ] = vIdx = int( vertices.size() ); vertices.push_back( InterpolateVertices( vertices[v1] , vertices[v2] , trimValue ) ); } else vIdx = iter->second; poly.push_back( vIdx ); } for( int _j=0 ; _j<=sz ; _j++ ) { int j1 = (_j+start+sz-1)%sz , j2 = (_j+start)%sz; int v1 = polygon[j1] , v2 = polygon[j2]; if( gt[j2]==gtFlag ) poly.push_back( v2 ); else { int vIdx; hash_map< long long , int >::iterator iter = vertexTable.find( EdgeKey( v1 , v2 ) ); if( iter==vertexTable.end() ) { vertexTable[ EdgeKey( v1 , v2 ) ] = vIdx = int( vertices.size() ); vertices.push_back( InterpolateVertices( vertices[v1] , vertices[v2] , trimValue ) ); } else vIdx = iter->second; poly.push_back( vIdx ); if( gtFlag ){ if( gtPolygons ) gtPolygons->push_back( poly ) ; if( ltFlags ) ltFlags->push_back( true ); } else { if( ltPolygons ) ltPolygons->push_back( poly ) ; if( gtFlags ) gtFlags->push_back( true ); } poly.clear() , poly.push_back( vIdx ) , poly.push_back( v2 ); gtFlag = !gtFlag; } } } } template< class Real , class Vertex > void Triangulate( const std::vector< Vertex >& vertices , const std::vector< std::vector< int > >& polygons , std::vector< std::vector< int > >& triangles ) { triangles.clear(); for( size_t i=0 ; i3 ) { MinimalAreaTriangulation< Real > mat; std::vector< Point3D< Real > > _vertices( polygons[i].size() ); std::vector< TriangleIndex > _triangles; for( int j=0 ; j double PolygonArea( const std::vector< Vertex >& vertices , const std::vector< int >& polygon ) { if( polygon.size()<3 ) return 0.; else if( polygon.size()==3 ) return TriangleArea( vertices[polygon[0]].point , vertices[polygon[1]].point , vertices[polygon[2]].point ); else { Point3D< Real > center; for( size_t i=0 ; i void RemoveHangingVertices( std::vector< Vertex >& vertices , std::vector< std::vector< int > >& polygons ) { hash_map< int , int > vMap; std::vector< bool > vertexFlags( vertices.size() , false ); for( size_t i=0 ; i _vertices( vCount ); for( int i=0 ; i >& polygons , std::vector< std::vector< int > >& components ) { std::vector< int > polygonRoots( polygons.size() ); for( size_t i=0 ; i edgeTable; for( size_t i=0 ; i::iterator iter = edgeTable.find( eKey ); if( iter==edgeTable.end() ) edgeTable[ eKey ] = int(i); else { int p = iter->second; while( polygonRoots[p]!=p ) { int temp = polygonRoots[p]; polygonRoots[p] = int(i); p = temp; } polygonRoots[p] = int(i); } } } for( size_t i=0 ; i vMap; for( int i= 0 ; i inline Point3D< Real > CrossProduct( Point3D< Real > p1 , Point3D< Real > p2 ){ return Point3D< Real >( p1[1]*p2[2]-p1[2]*p2[1] , p1[2]*p2[0]-p1[0]*p2[2] , p1[0]*p1[1]-p1[1]*p2[0] ); } template< class Real > double TriangleArea( Point3D< Real > v1 , Point3D< Real > v2 , Point3D< Real > v3 ) { Point3D< Real > n = CrossProduct( v2-v1 , v3-v1 ); return sqrt( n[0]*n[0] + n[1]*n[1] + n[2]*n[2] ) / 2.; } template< class Vertex > int Execute( void ) { float min , max; int paramNum = sizeof(params)/sizeof(cmdLineReadable*); std::vector< Vertex > vertices; std::vector< std::vector< int > > polygons; int ft , commentNum = paramNum+2; char** comments; PlyReadPolygons( In.value , vertices , polygons , Vertex::ReadProperties , Vertex::ReadComponents , ft , &comments , &commentNum ); for( int i=0 ; i( vertices , polygons ); min = max = vertices[0].value; for( size_t i=0 ; i( min , vertices[i].value ) , max = std::max< float >( max , vertices[i].value ); printf( "Value Range: [%f,%f]\n" , min , max ); hash_map< long long , int > vertexTable; std::vector< std::vector< int > > ltPolygons , gtPolygons; std::vector< bool > ltFlags , gtFlags; for( int i=0 ; i0 ) { std::vector< std::vector< int > > _ltPolygons , _gtPolygons; std::vector< std::vector< int > > ltComponents , gtComponents; SetConnectedComponents( ltPolygons , ltComponents ); SetConnectedComponents( gtPolygons , gtComponents ); std::vector< double > ltAreas( ltComponents.size() , 0. ) , gtAreas( gtComponents.size() , 0. ); std::vector< bool > ltComponentFlags( ltComponents.size() , false ) , gtComponentFlags( gtComponents.size() , false ); double area = 0.; for( size_t i=0 ; i( vertices , ltPolygons[ ltComponents[i][j] ] ); ltComponentFlags[i] = ( ltComponentFlags[i] || ltFlags[ ltComponents[i][j] ] ); } area += ltAreas[i]; } for( size_t i=0 ; i( vertices , gtPolygons[ gtComponents[i][j] ] ); gtComponentFlags[i] = ( gtComponentFlags[i] || gtFlags[ gtComponents[i][j] ] ); } area += gtAreas[i]; } for( size_t i=0 ; i > polys = ltPolygons; Triangulate< float , Vertex >( vertices , ltPolygons , polys ) , ltPolygons = polys; } { std::vector< std::vector< int > > polys = gtPolygons; Triangulate< float , Vertex >( vertices , gtPolygons , polys ) , gtPolygons = polys; } } RemoveHangingVertices( vertices , gtPolygons ); sprintf( comments[commentNum++] , "#Trimmed In: %9.1f (s)" , Time()-t ); if( Out.set ) PlyWritePolygons( Out.value , vertices , gtPolygons , Vertex::WriteProperties , Vertex::WriteComponents , ft , comments , commentNum ); return EXIT_SUCCESS; } int SurfaceTrimmer( int argc , char* argv[] ) { int paramNum = sizeof(params)/sizeof(cmdLineReadable*); cmdLineParse( argc-1 , &argv[1] , paramNum , params , 0 ); if( !In.set || !Trim.set ) { ShowUsage( argv[0] ); return EXIT_FAILURE; } bool readFlags[ PlyColorAndValueVertex< float >::ReadComponents ]; if( !PlyReadHeader( In.value , PlyColorAndValueVertex< float >::ReadProperties , PlyColorAndValueVertex< float >::ReadComponents , readFlags ) ) fprintf( stderr , "[ERROR] Failed to read ply header: %s\n" , In.value ) , exit( 0 ); bool hasValue = readFlags[3]; bool hasColor = ( readFlags[4] || readFlags[7] ) && ( readFlags[5] || readFlags[8] ) && ( readFlags[6] || readFlags[9] ); if( !hasValue ) fprintf( stderr , "[ERROR] Ply file does not contain values\n" ) , exit( 0 ); if( hasColor ) return Execute< PlyColorAndValueVertex< float > >(); else return Execute< PlyValueVertex< float > >(); }