You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

168 lines
5.7 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#--------------------------导包
import torch
from torch.autograd import Variable
import torchvision
from torchvision import transforms, models
import copy
from PIL import Image
import matplotlib.pyplot as plt
#--------------------------1.数据预处理,加载数据
transform = transforms.Compose([transforms.Resize([224,224]),
transforms.ToTensor()])
def loadimg(path = None):
img = Image.open(path)
img = transform(img)
img = img.unsqueeze(0)
return img
content_img = loadimg('images/1.jpg') #入参是自己存放图片的位置
content_img = Variable(content_img).cuda()
style_img = loadimg('images/2.jpg')
style_img = Variable(style_img).cuda()
#--------------------------2.定义内容损失和风格损失
class Content_loss(torch.nn.Module):
def __init__(self,weight,target):
super(Content_loss,self).__init__()
self.weight = weight
self.target = target.detach()*weight
self.loss_fn = torch.nn.MSELoss()
def forward(self,in_put):
self.loss = self.loss_fn(in_put*self.weight,self.target)
return in_put
def backward(self):
self.loss.backward(retain_graph = True)
return self.loss
class Gram_matrix(torch.nn.Module):
def forward(self,in_put):
a,b,c,d = in_put.size()
feature = in_put.view(a*b,c*d)
gram = torch.mm(feature,feature.t())
return gram.div(a*b*c*d)
class Style_loss(torch.nn.Module):
def __init__(self,weight,target):
super(Style_loss,self).__init__()
self.weight = weight
self.target = target.detach()*weight
self.loss_fn = torch.nn.MSELoss()
self.gram = Gram_matrix()
def forward(self,in_put):
self.Gram = self.gram(in_put.clone())
self.Gram.mul_(self.weight)
self.loss = self.loss_fn(self.Gram,self.target)
return in_put
def backward(self):
self.loss.backward(retain_graph = True)
return self.loss
#--------------------------3.模型搭建
cnn = models.vgg16(pretrained = True).features #迁移VGG16架构的特征提取部分
#指定整个卷积过程中分别在哪一层提取内容和风格
content_layer = ["Conv_3"]
style_layer = ["Conv_1","Conv_2","Conv_3","Conv_4"]
#定义保存内容损失和风格损失的列表
content_losses = []
style_losses = []
#指定内容损失和风格损失对最后得到的融合图片的影响权重
content_weight = 1
style_weight = 1000
#搭建图像风格迁移模型的代码如下:
new_model = torch.nn.Sequential() #建立空的模型
model = copy.deepcopy(cnn)
#deepcopy深复制将被复制对象完全再复制一遍作为独立的新个体单独存在改变原有被复制对象不会对已经复制出来的新对象产生影响。
#copy浅复制并不会产生一个独立的对象单独存在他只是将原有的数据块打上一个新标签
#所以当其中一个标签被改变的时候,数据块就会发生变化,另一个标签也会随之改变。
gram = Gram_matrix()
use_gpu = torch.cuda.is_available()
if use_gpu:
model = model.cuda()
new_model = new_model.cuda()
gram = gram.cuda()
index = 1
#只使用迁移模型特征提取部分的前8层
for layer in list(model)[:8]:
if isinstance(layer,torch.nn.Conv2d):
name = "Conv_" + str(index)
#使用add_module方法向空的模型加入指定的层次模块
new_model.add_module(name,layer)
if name in content_layer:
target = new_model(content_img).clone()
content_loss = Content_loss(content_weight,target)
new_model.add_module("content_loss_"+str(index),content_loss)
content_losses.append(content_loss)
if name in style_layer:
target = new_model(style_img).clone()
target = gram(target)
style_loss = Style_loss(style_weight,target)
new_model.add_module("style_loss_"+str(index),style_loss)
style_losses.append(style_loss)
if isinstance(layer,torch.nn.ReLU):
name = "ReLU_"+str(index)
new_model.add_module(name,layer)
index = index + 1
if isinstance(layer,torch.nn.MaxPool2d):
name = "MaxPool_"+str(index)
new_model.add_module(name,layer)
#构造优化器
input_img = content_img.clone()
parameter = torch.nn.Parameter(input_img.data)
optimizer = torch.optim.LBFGS([parameter])
#--------------------------.模型训练和参数优化
epoch_n = 300
epoch = [0]
while epoch[0] <= epoch_n:
def closure():
optimizer.zero_grad()
style_score = 0
content_score = 0
parameter.data.clamp_(0,1)
new_model(parameter)
for sl in style_losses:
style_score += sl.backward()
for cl in content_losses:
content_score += cl.backward()
epoch[0] += 1
if epoch[0] % 50 == 0:
print('Epoch:{} Style_loss: {:4f} Content_loss: {:.4f}'.format(epoch[0], style_score.data.item(),
content_score.data.item()))
return style_score + content_score
optimizer.step(closure)
#--------------------------5.对风格迁移图片输出
output = parameter.data
unloader = transforms.ToPILImage() # 重新转化成PIL图像格式
plt.ion()
plt.figure()
def imshow(tensor, title=None):
image = tensor.clone().cpu() # 克隆tensor改变时不影响被克隆的tensor
image = image.view(3, 224, 224) # 转换维度
image = unloader(image)
plt.imshow(image)
if title is not None:
plt.title(title)
plt.pause(0.001) # 稍作停顿,以便更新图表
imshow(output, title='Output Image')
# 设置sphinx_gallery_thumbnail_number = 4
plt.ioff()
plt.show()